An effective comparison involving a novel spectral approach and finite difference method for the Schrödinger equation involving the Riesz fractional derivative in the quantum field theory

  • Asim Patra
Regular Article


This paper displays the approach of the time-splitting Fourier spectral (TSFS) technique for the linear Riesz fractional Schrödinger equation (RFSE) in the semi-classical regime. The splitting technique is shown to be unconditionally stable. Further a suitable implicit finite difference discretization of second order has been manifested for the RFSE where the Riesz derivative has been discretized via an approach of fractional centered difference. Moreover the stability analysis for the implicit scheme has also been presented here via von Neumann analysis. The L2-norm and \(L^{\infty}\)-norm errors are calculated for \(\vert u(x,t)\vert^{2}\), Re\((u(x,t))\) and Im\((u(x,t))\) for various cases. The results obtained by the methods are further tabulated for the absolute errors for \(\vert u(x,t)\vert^{2}\). Furthermore the graphs are depicted showing comparison of \(\vert u(x,t)\vert^{2}\) by both techniques. The derivatives are taken here in the context of the Riesz fractional sense. Apart from that, the comparative study put forth in the following section via tables and graphs between the implicit second-order finite difference method (IFDM) and the TSFS method is for the purpose of investigating the efficiency of the results obtained. Moreover the stability analysis of the presented techniques manifesting their unconditional stability makes the proposed approach more competing and accurate.


  1. 1.
    K.S. Miller, B. Ross, An Introduction to Fractional Calculus and Fractional Differential Equations (John Wiley, New York, NY, USA, 1993)Google Scholar
  2. 2.
    I. Podlubny, Fractional Differential Equations (Academic Press, New York, 1999)Google Scholar
  3. 3.
    K.B. Oldham, J. Spanier, The Fractional Calculus (Academic Press, New York, NY, USA, 1974)Google Scholar
  4. 4.
    S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications (Gordan and Breach, New York, NY, USA, 1993)Google Scholar
  5. 5.
    J. Sabatier, O.P. Agrawal, J.A.T. Machado, Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering (Springer, Netherlands, 2007)Google Scholar
  6. 6.
    Q. Wang, Appl. Math. Comput. 182, 1048 (2006)MathSciNetGoogle Scholar
  7. 7.
    M. Dehghan, J. Manafian, A. Saadatmandi, Z. Naturforsch. A 65, 935 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    A. Saadatmandi, M. Dehghan, Comput. Math. Appl. 59, 1326 (2010)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Y. Zhang, J. Comput. Nonlinear Dyn. 8, 041020 (2013)CrossRefGoogle Scholar
  10. 10.
    C. Celik, M. Duman, J. Comput. Phys. 231, 1743 (2012)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    T. Aboelenen, Nonlinear Dyn. (2017)
  12. 12.
    T. Aboelenen, Commun. Nonlinear Sci. Numer. Simul. 54, 428 (2018)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    T. Aboelenen, H.M. El-Hawary, Comput. Math. Appl. 73, 1197 (2017)MathSciNetCrossRefGoogle Scholar
  14. 14.
    H. Wang, J. Comput. Phys. 205, 88 (2007)Google Scholar
  15. 15.
    D. Bai, J. Wang, Commun. Nonlinear Sci. Numer. Simul. 17, 1201 (2012)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    W. Bao, S. Jin, P.A. Markowich, J. Comput. Phys. 175, 487 (2002)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    P.A. Markowich, P. Pietra, C. Pohl, Numer. Math. 81, 595 (1999)MathSciNetCrossRefGoogle Scholar
  18. 18.
    G.M. Muslu, H.A. Erbay, Comput. Math. Appl. 45, 503 (2003)MathSciNetCrossRefGoogle Scholar
  19. 19.
    H. Borluk, G.M. Muslu, H.A. Erbay, Math. Comput. Simul. 74, 113 (2007)CrossRefGoogle Scholar
  20. 20.
    K.A. Bagrinovski, S.K. Godunov, Dokl. Akad. Nauk SSSR 115, 413 (1957)Google Scholar
  21. 21.
    G. Strang, SIAM J. Numer. Anal. 5, 506 (1968)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    G.I. Marchuk, Methods of Splitting (Nauka, Moscow, 1998)Google Scholar
  23. 23.
    D. Bai, L. Zhang, Phys. Lett. A 373, 2237 (2009)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    S. Saha Ray, Z. Naturforsch. A 70, 659 (2014)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.National Institute of TechnologyDepartment of MathematicsRourkelaIndia

Personalised recommendations