Advertisement

Sagnac delay in the Kerr-dS spacetime: Implications for Mach’s principle

  • R. Kh. Karimov
  • R. N. Izmailov
  • G. M. Garipova
  • K. K. Nandi
Regular Article

Abstract.

Relativistic twin paradox can have important implications for Mach’s principle. It has been recently argued that the behavior of the time asynchrony (different aging of twins) between two flying clocks along closed loops can be attributed to the existence of an absolute spacetime, which makes Mach’s principle unfeasible. In this paper, we shall revisit, and support, this argument from a different viewpoint using the Sagnac delay. This is possible since the above time asynchrony is known to be exactly the same as the Sagnac delay between two circumnavigating light rays re-uniting at the orbiting source/receiver. We shall calculate the effect of mass M and cosmological constant \( \Lambda\) on the delay in the general case of Kerr-de Sitter spacetime. It follows that, in the independent limits \( M\rightarrow 0\), spin \( a\rightarrow 0\) and \( \Lambda \rightarrow 0\), while the Kerr-dS metric reduces to Minkowski metric, the clocks need not tick in consonance since there will still appear a non-zero observable Sagnac delay. While we do not measure spacetime itself, we do measure the Sagnac effect, which signifies an absolute substantive Minkowski spacetime instead of a void. We shall demonstrate a completely different limiting behavior of Sagnac delay, heretofore unknown, between the case of non-geodesic and geodesic source/observer motion.

References

  1. 1.
    H.I.M. Lichtenegger, L. Iorio, Eur. Phys. J. Plus 126, 129 (2011)CrossRefGoogle Scholar
  2. 2.
    R. Schlegel, Nature (London) 242, 180 (1973)ADSCrossRefGoogle Scholar
  3. 3.
    J.C. Hafele, R.E. Keating, Science 177, 166 (1972)ADSCrossRefGoogle Scholar
  4. 4.
    J.C. Hafele, R.E. Keating, Science 177, 168 (1972)ADSCrossRefGoogle Scholar
  5. 5.
    G. Sagnac, C. R. Acad. Sci. Paris 157, 708 (1913)Google Scholar
  6. 6.
    A. Bhadra, T.B. Nayak, K.K. Nandi, Phys. Lett. A 295, 1 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    K.K. Nandi, P.M. Alsing, J.C. Evans, T.B. Nayak, Phys. Rev. D 63, 084027 (2001)ADSCrossRefGoogle Scholar
  8. 8.
    A. Ashtekar, A. Magnon, J. Math. Phys. 16, 343 (1975)ADSCrossRefGoogle Scholar
  9. 9.
    A. Tartaglia, Phys. Rev. D 58, 064009 (1998)ADSCrossRefGoogle Scholar
  10. 10.
    J.M. Cohen, B. Mashhoon, Phys. Lett. A 181, 353 (1993)ADSCrossRefGoogle Scholar
  11. 11.
    A. Einstein, The Meaning of Relativity (Princeton U.P., Princeton, NJ, 1955) pp. 55--63Google Scholar
  12. 12.
    B.F. Schutz, A First Course in General Relativity (Cambridge U.P., New York, 1985) p. 298Google Scholar
  13. 13.
    T.A. Weber, Am. J. Phys. 65, 486 (1997)ADSCrossRefGoogle Scholar
  14. 14.
    L.D. Landau, E.M. Lifshitz, The Classical Theory of Fields, 4th ed. (Pergamon, New York, 1975) pp. 234--237Google Scholar
  15. 15.
    B. Carter, in Les Astres Occlus, edited by C. DeWitt, B. DeWitt (Gordon & Breach, New York, 1973)Google Scholar
  16. 16.
    J.A.R. Cembranos, A. de la Cruz-Dombriz, P. Jimeno Romero, Int. J. Geom. Methods Mod. Phys. 11, 1450001 (2014)MathSciNetCrossRefGoogle Scholar
  17. 17.
    D. Pérez, G.E. Romero, S.E. Perez Bergliaffa, Astron. Astrophys. 551, A4 (2013)CrossRefGoogle Scholar
  18. 18.
    Y. Aharonov, D. Bohm, Phys. Rev. 115, 485 (1959)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    M.D. Semon, Found. Phys. 12, 49 (1982)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    M.L. Ruggiero, Nuovo Cimento B 119, 893 (2004)ADSGoogle Scholar
  21. 21.
    J.J. Sakurai, Phys. Rev. D 21, 2993 (1980)ADSCrossRefGoogle Scholar
  22. 22.
    K.K. Nandi, Y.-Z. Zhang, Phys. Rev. D 66, 063005 (2002)ADSCrossRefGoogle Scholar
  23. 23.
    P.M. Alsing, J.C. Evans, K.K. Nandi, Gen. Rel. Grav. 33, 1459 (2001)ADSCrossRefGoogle Scholar
  24. 24.
    L. Iorio, M.L. Ruggiero, JCAP 03, 024 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    W. Rindler, M. Ishak, Phys. Rev. D 76, 043006 (2007)ADSCrossRefGoogle Scholar
  26. 26.
    A. Bhattacharya, G.M. Garipova, E. Laserra, A. Bhadra, K.K. Nandi, JCAP 02, 028 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    A. Bhattacharya, A. Panchenko, M. Scalia, C. Cattani, K.K. Nandi, JCAP 09, 004 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    C. Cattani, M. Scalia, E. Laserra, I. Bochicchio, K.K. Nandi, Phys. Rev. D 87, 047503 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    M. Sereno, P. Jetzer, Phys. Rev. D 73, 063004 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    V. Kagramanova, J. Kunz, C. Lämmerzahl, Phys. Lett. B 634, 465 (2006)ADSCrossRefGoogle Scholar
  31. 31.
    C. Chakraborty, P. Majumdar, Class. Quantum Grav. 31, 075006 (2014)ADSCrossRefGoogle Scholar
  32. 32.
    V. Kagramanova, J. Kunz, E. Hackmann, C. Lämmerzahl, Phys. Rev. D 81, 124044 (2010)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • R. Kh. Karimov
    • 1
  • R. N. Izmailov
    • 1
  • G. M. Garipova
    • 2
  • K. K. Nandi
    • 1
    • 3
  1. 1.Zel’dovich International Center for AstrophysicsBashkir State Pedagogical UniversityUfaRussia
  2. 2.Ural Federal UniversityEkaterinburgRussia
  3. 3.Department of Physics & AstronomyBashkir State UniversitySterlitamakRussia

Personalised recommendations