Fractal and spectroscopic analysis of soot from internal combustion engines

  • M. S. Swapna
  • H. V. Saritha Devi
  • Vimal Raj
  • S. Sankararaman
Regular Article


Today diesel engines are used worldwide for various applications and very importantly in transportation. Hydrocarbons are the most widespread precursors among carbon sources employed in the production of carbon nanotubes (CNTs). The aging of internal combustion engine is an important parameter in deciding the carbon emission and particulate matter due to incomplete combustion of fuel. In the present work, an attempt has been made for the effective utilization of the aged engines for potential applicationapplications in fuel cells and nanoelectronics. To analyze the impact of aging, the particulate matter rich in carbon content areis collected from diesel engines of different ages. The soot with CNTs is purified by the liquid phase oxidation method and analyzed by Field Emission Scanning Electron Microscopy, High-Resolution Transmission Electron Microscopy, Energy Dispersive Spectroscopy, UV-Visible spectroscopy, Raman spectroscopy and Thermogravimetric analysis. The SEM image contains self-similar patterns probing fractal analysis. The fractal dimensions of the samples are determined by the box counting method. We could find a greater amount of single-walled carbon nanotubes (SWCNTs) in the particulate matter emitted by aged diesel engines and thereby giving information about the combustion efficiency of the engine. The SWCNT rich sample finds a wide range of applicationapplications in nanoelectronics and thereby pointing a potential use of these aged engines.


  1. 1.
    J.B. Heywood, Internal Combustion Engine Fundamentals (McGraw-Hill, New York, 1998)Google Scholar
  2. 2.
    J.H. Bang, K.S. Suslick, Adv. Mater. 22, 1039 (2010)CrossRefGoogle Scholar
  3. 3.
    A.N. Mohan, B. Manoj, Int. J. Electrochem. Sci. 7, 9537 (2012)Google Scholar
  4. 4.
    M. Kumar, Y. Ando, Diam. Relat. Mater. 12, 1845 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    T. Ungár, J. Gubicza, R. Gabor, C. Pantea, Carbon 40, 929 (2002)CrossRefGoogle Scholar
  6. 6.
    D.W.E.A. Santana, M.P. Sepulveda, P.J.S. Barbiera, J. Fuel 86, 911 (2007)CrossRefGoogle Scholar
  7. 7.
    M. Al-Ghouti, Y. Al-Degs, F. Mustafa, J. Fuel 89, 193 (2010)CrossRefGoogle Scholar
  8. 8.
    M.S. Swapna, R.C. Arsha, Dani Dileep, Rageena Joseph, S. Sankararaman, Open Access J. Photoenergy 1, 00013 (2017)Google Scholar
  9. 9.
    B.B. Mandelbrot, The Fractal Geometry of Nature (Freeman, New York, 1983)Google Scholar
  10. 10.
    M.F. Barnsley, Fractals Everywhere, 2nd edition (Academic Press Professional, New York, 1993)Google Scholar
  11. 11.
    J. Feder, Fractals (Plenum Press, New York, 1988)Google Scholar
  12. 12.
    M.S. Swapna, S. Sankararaman, Nanosyst.: Phys. Chem. Math. 8, 809 (2017)Google Scholar
  13. 13.
    M.S. Swapna, S.S. Shinker, A.S. Lekshmi, S. Sankararaman, Int. J. Eng. Sci. Technol. 9, 816 (2017)Google Scholar
  14. 14.
    S. Soumya, M.S. Swapna, S. Sankararaman, Int. J. Nanotechnol. Appl. 11, 255 (2017)Google Scholar
  15. 15.
    S. Soumya, M.S. Swapna, R. Vimal, V.P. Mahadevan Pillai, S. Sankararaman, Eur. Phys. J. Plus 132, 551 (2017)CrossRefGoogle Scholar
  16. 16.
    S. Hussain, P. Jha, A. Chouksey, R. Raman, S.S. Islam, T. Islam, P.K. Choudary, Harsh, J. Mod. Phys. 2, 538 (2011)CrossRefGoogle Scholar
  17. 17.
    L.S.K. Pang, J.D. Saxby, S.P. Chatfield, J. Phys. Chem. 97, 6941 (1993)CrossRefGoogle Scholar
  18. 18.
    O.M. Dunens, K.J. MacKenzie, A.T. Harris, Environ. Sci. Technol. 43, 7889 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    J.H. Lehman, M. Terrones, E. Mansfield, K.E. Hurst, V. Meunier, Carbon 49, 2581 (2011)CrossRefGoogle Scholar
  20. 20.
    P.M. Ajayan, T.W. Ebbesen, T. Ichihashi, S. Iijima, K. Tanigaki, H. Hiura, Nature 362, 5 (1993)CrossRefGoogle Scholar
  21. 21.
    N. Yao, V. Lordi, S.X.V. Ma, E. Dujardin, A. Krishnan, M.M.J. Treacy et al., J. Mater. Res. 13, 2432 (1998)ADSCrossRefGoogle Scholar
  22. 22.
    G.S.B. McKee, J.S. Flowers, K.S. Vecchio, J. Phys. Chem. C 112, 10108 (2008)CrossRefGoogle Scholar
  23. 23.
    D.K. Singh, P.K. Iyer, P.K. Giri, J. Nanosci. Nanotechnol. 9, 5396 (2009)CrossRefGoogle Scholar
  24. 24.
    M.S. Dresselhaus, G. Dresselhaus, R. Sait, A. Jorio, Phys. Rep. 409, 47 (2005)ADSCrossRefGoogle Scholar
  25. 25.
    M.S. Swapna, S. Sankararaman, J. Mater. Sci. Nanotechnol. 5, 104 (2017)Google Scholar
  26. 26.
    A. Jorio, M.A. Pimenta, A.G. Souza Filho, R. Saito, G. Dresselhaus, M.S. Dresselhaus, New J. Phys. 5, 139 (2003)ADSCrossRefGoogle Scholar
  27. 27.
    O'Connell et al., Science 297, 599 (2002)ADSCrossRefGoogle Scholar
  28. 28.
    S.S. Islam, K.A. Shah, H.S. Mavi, A.K. Shaukla, S. Rath, Harsh, Bull. Mater. Sci. 30, 295 (2007)CrossRefGoogle Scholar
  29. 29.
    B.N. Sahoo, B. Kandasubramanian, RSC Adv. 4, 11331 (2017)CrossRefGoogle Scholar
  30. 30.
    M.S. Swapna, V.M. Pooja, S.A. Anamika, S. Soumya, S. Sankararaman, JOJ Mater. Sci. 1, 555566 (2017)Google Scholar
  31. 31.
    M.S. Swapna, S. Sankararaman, Int. J. Mater. Sci. 12, 541 (2017)Google Scholar
  32. 32.
    M.S. Swapna, C. Beryl, S.S. Reshma et al., BioNanoSci. 7, 583 (2017)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • M. S. Swapna
    • 1
  • H. V. Saritha Devi
    • 1
  • Vimal Raj
    • 1
  • S. Sankararaman
    • 1
  1. 1.Department of Optoelectronics and Department of Nanoscience and NanotechnologyUniversity of KeralaTrivandrumIndia

Personalised recommendations