A novel fractional derivative with variable- and constant-order applied to a mass-spring-damper system

  • V. F. Morales-Delgado
  • J. F. Gómez-AguilarEmail author
  • M. A. Taneco-Hernández
  • R. F. Escobar-Jiménez
Regular Article


This paper deals with the application of a novel variable- and constant-order fractional derivative with no singular kernel in the modeling of a mass-spring-damper system. The variable-order fractional derivative can be set as a smooth function, bounded on (0;1] , while the constant-order fractional derivative can be set as a fractional equation, bounded on (0;1] . Our results show that the mechanical components exhibit viscoelastic behaviors producing temporal fractality at different scales. In the variable-order model, in contrast to the constant-order fractional mass-spring-damper system, the displacement changes with time. This means that the memory rate of the system changes with time and is determined by the current time instant. For different time periods we have different memory abilities. The integer-order classical model is recovered when the order of the fractional derivative is equal to 1.


  1. 1.
    Z. Li, L. Liu, S. Dehghan, Y. Chen, D. Xue, Int. J. Control 90, 1165 (2017)CrossRefGoogle Scholar
  2. 2.
    D. Caratelli, L. Mescia, P. Bia, Fractional-Calculus-Based FDTD Algorithm for Ultra-Wideband Electromagnetic Pulse Propagation in Complex Layered Havriliak-Negami Media, in Modeling in Mathematics (Atlantis Press, Paris, 2017)Google Scholar
  3. 3.
    P. Sopasakis, H. Sarimveis, P. Macheras, A. Dokoumetzidis, J. Pharmacokin. Pharmacodyn. 45, 107 (2018)CrossRefGoogle Scholar
  4. 4.
    Y. Long, B. Xu, D. Chen, W. Ye, Appl. Math. Model.
  5. 5.
    A. Atangana, I. Koca, Fundam. Inform. 151, 145 (2017)CrossRefGoogle Scholar
  6. 6.
    Y. Liu, Z. Fang, H. Li, S. He, Appl. Math. Comput. 243, 703 (2014)MathSciNetGoogle Scholar
  7. 7.
    Y. Liu, Y. Du, H. Li, S. He, W. Gao, Comput. Math. Appl. 70, 573 (2015)MathSciNetCrossRefGoogle Scholar
  8. 8.
    P. Sakrajda, D. Sierociuk, Modeling Heat Transfer Process in Grid-Holes Structure Changed in Time Using Fractional Variable Order Calculus, in Theory and Applications of Non-integer Order Systems, edited by A. Barbiaz (Springer International Publishing, 2017) pp. 297--306Google Scholar
  9. 9.
    C. Ramírez, V. Astorga, H. Nuñez, A. Jaques, R. Simpson, J. Food Process Eng. 40, e12549 (2017)CrossRefGoogle Scholar
  10. 10.
    M. Seixas, R. Melício, V.M.F. Mendes, Energy 69, 357 (2014)CrossRefGoogle Scholar
  11. 11.
    R.K. Biswas, S. Sen, Fractional optimal control within Caputo’s derivative, in ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (American Society of Mechanical Engineers, 2011) pp. 353--360Google Scholar
  12. 12.
    T.T. Hartley, C.F. Lorenzo, Nonlinear Dyn. 38, 69 (2004)CrossRefGoogle Scholar
  13. 13.
    M. Naber, Int. J. Differ. Equ. 2010, 197020 (2010)MathSciNetGoogle Scholar
  14. 14.
    A.A. Stanislavsky, Phys. Rev. E 70, 051103 (2004)ADSCrossRefGoogle Scholar
  15. 15.
    V.E. Tarasov, Cent. Eur. J. Phys. 10, 382 (2012)Google Scholar
  16. 16.
    J.F. Gómez-Aguilar, J.J. Rosales-García, J.J. Bernal-Alvarado, T. Córdova-Fraga, R. Guzmán-Cabrera, Rev. Mex. Fis. 58, 348 (2012)Google Scholar
  17. 17.
    J.F. Gómez-Aguilar, H. Yépez-Martínez, C. Calderón-Ramón, I. Cruz-Orduña, R.F. Escobar-Jiménez, V.H. Olivares-Peregrino, Entropy 17, 6289 (2015)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    S. Rannen, C. Ghorbel, N. Benhadj Braiek, Int. J. Adv. Comput. Sci. Appl. 8, 517 (2017)CrossRefGoogle Scholar
  19. 19.
    D. Wang, C. Mu, IEEE Trans. Ind. Electron. 65, 654 (2017)ADSCrossRefGoogle Scholar
  20. 20.
    Q. Mao, H. Shen, Adv. Mech. Eng.
  21. 21.
    M. Ghadiri, M. Kazemi, Int. J. Struct. Stabil. Dyn. 18, 1850030 (2018)CrossRefGoogle Scholar
  22. 22.
    S.G. Samko, Anal. Math. 21, 213 (1995)MathSciNetCrossRefGoogle Scholar
  23. 23.
    X.J. Yang, arXiv:1612.03202 (2016)Google Scholar
  24. 24.
    C.F. Coimbra, Ann. Phys. 12, 692 (2003)MathSciNetCrossRefGoogle Scholar
  25. 25.
    A. Atangana, A.H. Cloot, Adv. Differ. Equ. 2013, 80 (2013)CrossRefGoogle Scholar
  26. 26.
    H.G. Sun, W. Chen, Y.Q. Chen, Physica A 388, 4586 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    A. Atangana, J. Comput. Phys. 293, 104 (2015)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    P. Zhuang, F. Liu, V. Anh, I. Turner, SIAM J. Numer. Anal. 47, 1760 (2009)MathSciNetCrossRefGoogle Scholar
  29. 29.
    I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications (Academic Press, New York, 1998)Google Scholar
  30. 30.
    M. Caputo, M. Fabricio, Progr. Fract. Differ. Appl. 1, 73 (2015)Google Scholar
  31. 31.
    A. Atangana, D. Baleanu, Theory Appl. Heat Transf. Model. Therm. Sci. 20, 763 (2016)Google Scholar
  32. 32.
    A. Atangana, I. Koca, Math. Nat. Sci. 1, 18 (2017)CrossRefGoogle Scholar
  33. 33.
    B.S.T. Alkahtani, I. Koca, A. Atangana, J. Nonlinear Sci. Appl. 9, 4867 (2016)MathSciNetCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Facultad de MatemáticasUniversidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Cd. UniversitariaChilpancingoMexico
  2. 2.CONACyT-Tecnológico Nacional de México/CENIDETInterior Internado Palmira S/NCuernavacaMexico
  3. 3.Tecnológico Nacional de México/CENIDETInterior Internado Palmira S/NCuernavacaMexico

Personalised recommendations