Advertisement

Study of the structure of yrast bands of neutron-rich 114-124Pd isotopes

  • Ritu Chaudhary
  • Rani DeviEmail author
  • S. K. Khosa
Regular Article
  • 57 Downloads

Abstract.

The projected shell model calculations have been carried out in the neutron-rich 114-124Pd isotopic mass chain. The results have been obtained for the deformation systematics of \(E(2^{+}_{1})\) and \(E(4^{+}_{1})/E({2}^{+}_{1})\) values, BCS subshell occupation numbers, yrast spectra, backbending phenomena, B(E2) transition probabilities and g-factors in these nuclei. The observed systematics of \(E(2^{+}_{1})\) values and \(R_{42}\) ratios in the 114-124Pd isotopic mass chain indicate that there is a decrease of collectivity as the neutron number increases from 68 to 78. The occurrence of backbending in these nuclei as well as the changes in the calculated B(E2) transition probabilities and g -factors predict that there are changes in the structure of yrast bands in these nuclei. These changes occur at the spin where there is crossing of g-band by 2-qp bands. The predicted backbendings and predicted values of B(E2)s and g-factors in some of the isotopes need to be confirmed experimentally.

References

  1. 1.
    I. Ahmad, W.R. Phillips, Rep. Prog. Phys. 58, 1415 (1995)ADSCrossRefGoogle Scholar
  2. 2.
    J.H. Hamilton et al., Prog. Nucl. Part. Phys. 35, 635 (1995)ADSCrossRefGoogle Scholar
  3. 3.
    X.Q. Zhang et al., Phys. Rev. C 63, 027302 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    A. Astier et al., Eur. Phys. J. A 50, 2 (2014)CrossRefGoogle Scholar
  5. 5.
    J. Meyer-Ter-Vehn, Nucl. Phys. A 249, 141 (1975)ADSCrossRefGoogle Scholar
  6. 6.
    P.F. Garrett, J.L. Wood, J. Phys. G 37, 064028 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    S. Frauendorf, Y. Gu, J. Sun, Int. J. Mod. Phys. E 20, 465 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    S.K. Chamoli et al., Phys. Rev. C 83, 054318 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    Y.X. Luo et al., Nucl. Phys. A 874, 32 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    P. Möller et al., Phys. Rev. Lett. 93, 162502 (2006)CrossRefGoogle Scholar
  11. 11.
    Y.X. Luo et al., Phys. Rev. C 69, 024315 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    Y.X. Luo et al., Phys. Lett. B 670, 307 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    I. Stefanescu et al., Nucl. Phys. A 789, 125 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    K.-H. Kim et al., Nucl. Phys. A 604, 163 (1996)ADSCrossRefGoogle Scholar
  15. 15.
    L.E. Svensson et al., Nucl. Phys. A 584, 547 (1995)ADSCrossRefGoogle Scholar
  16. 16.
    A. Dewald et al., Phys. Rev. C 78, 051302(R) (2008)ADSCrossRefGoogle Scholar
  17. 17.
    Y. Wang et al., Phys. Rev. C 63, 024309 (2001)ADSCrossRefGoogle Scholar
  18. 18.
    H. Hua et al., Phys. Lett. B 562, 201 (2003)ADSCrossRefGoogle Scholar
  19. 19.
    M. Houry et al., Eur. Phys. G. A 6, 43 (1999)ADSCrossRefGoogle Scholar
  20. 20.
    A. Jokinen et al., Eur. Phys. J. A 9, 9 (2000)ADSCrossRefGoogle Scholar
  21. 21.
    M. Stoyer et al., Nucl. Phys. A 787, 455 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    J. Aysto et al., Nucl. Phys. A 480, 104 (1988)ADSCrossRefGoogle Scholar
  23. 23.
    F. Montes et al., Phys. Rev. C 73, 035801 (2006)ADSCrossRefGoogle Scholar
  24. 24.
    J.L. Durell, Fission Fragment Spectroscopy, in Proceedings of the International Conference on Spectroscopy of Heavy Nuclei (1990)Google Scholar
  25. 25.
    Y.X. Luo et al., Nucl. Phys. A 919, 67 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    Dennis Fong, private communications, August 21 (2003) and March 23 (2004)Google Scholar
  27. 27.
    H. Hua et al., Phys. Rev. C 69, 014317 (2004)ADSCrossRefGoogle Scholar
  28. 28.
    H. Wang et al., Phys. Rev. C 88, 054318 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    S. Raman, C.W. Nestor Jr., P. Tikkanen, At. Data Nucl. Data Tables 78, 1 (2001)ADSCrossRefGoogle Scholar
  30. 30.
    A.G. Smith et al., J. Phys. G: Nucl. Part. Phys. 31, S1433 (2005)CrossRefGoogle Scholar
  31. 31.
    M. Boyukata, E. Ellinger, C. Fransen, J. Jolie, EPJ Web of Conferences 66, 02013 (2014)CrossRefGoogle Scholar
  32. 32.
    H. Machet, JYFL Annual Report (2003)Google Scholar
  33. 33.
    A.G. Smith et al., Phys. Rev. C 86, 014321 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    A.G. Smith et al., Phys. Rev. Lett. 73, 2540 (1994)ADSCrossRefGoogle Scholar
  35. 35.
    P. Van Isacker, G. Puddu, Nucl. Phys. 348, 125 (1980)CrossRefGoogle Scholar
  36. 36.
    A. Giannatiempo, Eur. Phys. J. A 49, 37 (2013)ADSCrossRefGoogle Scholar
  37. 37.
    A. Pandoh, R. Devi, S.K. Khosa, Phys. Rev. C 59, 129 (1999)ADSCrossRefGoogle Scholar
  38. 38.
    A. Giannatiempo, A. Nannini, P. Sona, Phys. Rev. C 58, 3316 (1998)ADSCrossRefGoogle Scholar
  39. 39.
    P. Moller et al., At. Data Nucl. Data Tables 59, 185 (1995)ADSCrossRefGoogle Scholar
  40. 40.
    P.H. Regan et al., Phys. Rev. C 55, 2305 (1997)ADSCrossRefGoogle Scholar
  41. 41.
    R. Aryaeinejad et al., Phys. Rev. C 48, 566 (1993)ADSCrossRefGoogle Scholar
  42. 42.
    J. Stachel, P. Van Isacker, K. Heyde, Phys. Rev. C 25, 650 (1982)ADSCrossRefGoogle Scholar
  43. 43.
    F. Pan, J.P. Draayer, Nucl. Phys. A 636, 156 (1998)ADSCrossRefGoogle Scholar
  44. 44.
    K. Zajac, L. Prochniak, K. Pomorski, S.G. Rohozinski, J. Srebrny, Nucl. Phys. A 653, 71 (1999)ADSCrossRefGoogle Scholar
  45. 45.
    B. Pritychenko, M. Birch, B. Singh, M. Horoi, At. Data Nucl. Data Tables 107, 1 (2016)ADSCrossRefGoogle Scholar
  46. 46.
    Y.-X. Liu et al., Nucl. Phys. A 858, 11 (2011)ADSCrossRefGoogle Scholar
  47. 47.
    Y. Sun et al., Phys. Rev. C 80, 054306 (2009)ADSCrossRefGoogle Scholar
  48. 48.
    R. Chaudhary et al., Nucl. Phys. A 939, 53 (2015)ADSCrossRefGoogle Scholar
  49. 49.
    K. Hara, Y. Sun, Int. J. Mod. Phys. E 4, 637 (1995)ADSCrossRefGoogle Scholar
  50. 50.
    Y. Sun, Phys. Scr. 91, 043005 (2016)ADSCrossRefGoogle Scholar
  51. 51.
    S.G. Nilsson et al., Nucl. Phys. A 131, 1 (1969)ADSCrossRefGoogle Scholar
  52. 52.
    P. Ring, P. Schuck, The Nuclear Many-Body Problem (Springer Verlag, New York, 1980)Google Scholar
  53. 53.
    T. Bengtsson, I. Ragnarsson, Nucl. Phys. A 436, 14 (1985)ADSCrossRefGoogle Scholar
  54. 54.
    R.B. Cakirli, R.F. Casten, Phys. Rev. C 78, 041301(R) (2008)ADSCrossRefGoogle Scholar
  55. 55.
    P. Federman, S. Pittel, Phys. Lett. B 69, 385 (1977)ADSCrossRefGoogle Scholar
  56. 56.
    P. Federman, S. Pittel, Phys. Lett. B 77, 29 (1978)ADSCrossRefGoogle Scholar
  57. 57.
    P. Federman, S. Pittel, R. Campos, Phys. Lett. B 82, 9 (1979)ADSCrossRefGoogle Scholar
  58. 58.
    P. Federman, S. Pittel, Phys. Rev. C 20, 820 (1979)ADSCrossRefGoogle Scholar
  59. 59.
    J. Zhang et al., Phys. Rev. C 58, R2663 (1998)ADSCrossRefGoogle Scholar
  60. 60.
    K. Hara, Y. Sun, Nucl. Phys. A 529, 445 (1991)ADSCrossRefGoogle Scholar
  61. 61.
    Y. Sun, J.L. Egido, Nucl. Phys. A 580, 1 (1994)ADSCrossRefGoogle Scholar
  62. 62.
    A. Bohr, B.R. Mottelson, Nuclear Structure I (New York, Benjamin, 1969)Google Scholar
  63. 63.
    B. Castel, S. Towner, Modern Theories of Nuclear Moments (Oxford, Clarendon,1990)Google Scholar
  64. 64.
    J. Rikovska et al., Phys. Rev. Lett. 85, 1392 (2000)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of JammuJammuIndia
  2. 2.Department of Physics and Astronomical SciencesCentral University of JammuJammuIndia

Personalised recommendations