Advertisement

Numerical analysis for trajectory controllability of a coupled multi-order fractional delay differential system via the shifted Jacobi method

  • B. Ganesh Priya
  • P. MuthukumarEmail author
Regular Article
  • 80 Downloads

Abstract.

This paper deals with the trajectory controllability for a class of multi-order fractional linear systems subject to a constant delay in state vector. The solution for the coupled fractional delay differential equation is established by the Mittag-Leffler function. The necessary and sufficient condition for the trajectory controllability is formulated and proved by the generalized Gronwall's inequality. The approximate trajectory for the proposed system is obtained through the shifted Jacobi operational matrix method. The numerical simulation of the approximate solution shows the theoretical results. Finally, some remarks and comments on the existing results of constrained controllability for the fractional dynamical system are also presented.

References

  1. 1.
    K. Diethelm, The Analysis of Fractional Differential Equations (Springer, London, 2010)Google Scholar
  2. 2.
    A. Kilbas, M.H. Srivastava, J.J. Trujillo, Theory and application of fractional differential equations, in North Holland Mathematics Studies, Vol. 204 (2006)Google Scholar
  3. 3.
    I. Podlubny, Fractional Differential Equations, in Mathematics in Science and Engineering, Vol. 198 (Academic Press, San Diego, CA, USA, 1999)Google Scholar
  4. 4.
    R. Hilfer, Applications of Fractional Calculus in Physics (World Scientific Publisher, Singapore, 2000)Google Scholar
  5. 5.
    R. Caponetto, G. Dongola, L. Fortuna, I. Petras, Fractional Order Systems: Modelling and Control Applications (World Scientific, Singapore, 2010)Google Scholar
  6. 6.
    M. Tavakoli, M. Tabatabaei, Multidimens. Syst. Signal Process. 28, 427 (2017)MathSciNetCrossRefGoogle Scholar
  7. 7.
    D. Xu, Y. Li, W. Zhou, Sci. World J. 2014, 1 (2014)Google Scholar
  8. 8.
    W. Deng, C. Li, Q. Guo, Fractals 15, 173 (2007)MathSciNetCrossRefGoogle Scholar
  9. 9.
    T. Kaczorek, Selected Problems of Fractional Systems Theory, Vol. 411 (Springer-Verlag, Berlin, 2011)Google Scholar
  10. 10.
    A. Babiarz, J. Klamka, M. Niezabitowski, Int. J. Appl. Math. Comput. Sci. 26, 263 (2016)MathSciNetCrossRefGoogle Scholar
  11. 11.
    T. Guendouzi, I. Hamada, Bol. Soc. Parana. Mat. 32, 55 (2014)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Q. Huang, Q. Wu, X.F. Zhou, Y. Wen, J. Wei, Math. Probl. Eng. 2015, 1 (2015)Google Scholar
  13. 13.
    R. Sakthivel, Y. Ren, Rep. Math. Phys. 68, 163 (2011)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    J. Klamka, Bull. Pol. Ac.: Tech. 56, 333 (2008)Google Scholar
  15. 15.
    J. Klamka, Nonlinear Dyn. 56, 169 (2009)CrossRefGoogle Scholar
  16. 16.
    R. Sakthivel, Y. Ren, A. Debbouche, N.I. Mahmudov, Appl. Anal. 95, 2361 (2016)MathSciNetCrossRefGoogle Scholar
  17. 17.
    R. Ganesh, R. Sakthivel, N.I. Mahmudov, Topol. Methods Nonlinear Anal. 43, 345 (2014)MathSciNetCrossRefGoogle Scholar
  18. 18.
    J. Klamka, A. Czornik, M. Niezabitowski, A. Babiarz, Asian Conference on Intelligent Information and Database Systems (Springer International Publishing, 2007) pp. 313--323Google Scholar
  19. 19.
    M. Bin, Y. Liu, Open J. Appl. Sci. 3, 37 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    M. Muslim, R.K. George, Differ. Equ. Dyn. Syst. (2016)  https://doi.org/10.1007/s12591-016-0292-z
  21. 21.
    T. Kaczorek, Circ. Syst. Signal Process. 35, 1818 (2016)CrossRefGoogle Scholar
  22. 22.
    C. John, J.J. Loiseau, Applications of Time Delay Systems (Springer-Verlag, Berlin Heidelberg, 2007)Google Scholar
  23. 23.
    B.B. He, H.C. Zhou, C.H. Kou, Commun. Nonlinear Sci. Numer. Simul. 32, 190 (2016)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    B. Sikora, Int. J. Appl. Math. Comput. Sci. 26, 521 (2016)MathSciNetCrossRefGoogle Scholar
  25. 25.
    R.J. Nirmala, K. Balachandran, L. Rodrguez-Germa, J.J. Trujillo, Rep. Math. Phys. 77, 87 (2016)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    H. Zhang, J. Cao, W. Jiang, J. Appl. Math. 2013, 1 (2013)ADSGoogle Scholar
  27. 27.
    M.A. Abdelkawy, R.T. Alqahtani, Eur. Phys. J. Plus. 132, 50 (2017)CrossRefGoogle Scholar
  28. 28.
    A.H. Bhrawy, M.M. Tharwat, M.A. Alghamdi, Bull. Malays. Math. Sci. Soc. 37, 983 (2014)MathSciNetGoogle Scholar
  29. 29.
    H. Khalil, R.A. Khan, Int. J. Comput. Math. 92, 1452 (2015)MathSciNetCrossRefGoogle Scholar
  30. 30.
    P. Muthukumar, B. Ganesh Priya, Int. J. Comput. Math. 94, 471 (2015)CrossRefGoogle Scholar
  31. 31.
    R. Gorenflo, A.A. Kilbas, F. Mainardi, S.V. Rogosin, Mittag-Leffler Functions: Related Topics and Applications (Springer, Berlin, 2014)Google Scholar
  32. 32.
    Z. Zhang, Z. Wei, J. Inequal. Appl. 45, 1 (2016)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsThe Gandhigram Rural Institute (Deemed to be University)TamilnaduIndia

Personalised recommendations