Advertisement

Structural and electrical properties of cobalt-doped 4H-\(\mathrm{SrMnO}_{3-\delta}\) perovskites obtained by the hydrothermal method

  • N. ben Rguiga
  • I. Álvarez-Serrano
  • M. L. López
  • W. Chérif
  • J. A. Alonso
Regular Article

Abstract.

A mild hydrothermal method was adapted to prepare the \( \mathrm{SrMn}_{1-x}\mathrm{Co}_{x}\mathrm{O}_{3-\delta}\) (\(0 \le x \le 0.2\)) compounds. They showed hexagonal-4H perovskite-type structure with space group \(P6_{3}/mmc\), and cell parameters \(a \sim 5.45\) and \(c \sim 9.08\) Å, as deduced from X-ray and neutron diffraction data. The mean atomic concentrations indicated global stoichiometries close to the nominal ones whereas electron microscopy analyses pointed out to heterogeneity at the nanoscale. The characterization of the electrical response by means of impedance measurements, suggested a semiconductor behavior mainly ascribed to bulk contributions. Relaxation and conduction processes were analyzed. The materials showed mixed electronic-ionic conduction above \(\sim 400\) K, when ionic conduction between intergrains becomes favored. Microstructural homogeneity was revealed as the key factor controlling the electrical response.

Supplementary material

13360_2018_11894_MOESM1_ESM.pdf (1.2 mb)
Supplementary material

References

  1. 1.
    C. Moure, O. Peña, Prog. Solid State Chem. 43, 123 (2015)CrossRefGoogle Scholar
  2. 2.
    T.V. Ramakrishnan, J. Phys.: Condens. Matter 19, 125211 (2007)ADSGoogle Scholar
  3. 3.
    A. Jun, J. Kim, J. Shin, G. Kim, ChemElectroChem 3, 511 (2016)CrossRefGoogle Scholar
  4. 4.
    Z.F. Zi, Y.P. Sun, X.B. Zhu, Z.R. Yang, J.M. Dai, W.H. Song, J. Magn. & Magn. Mater. 321, 2378 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    A. Ezaami, I. Sfifir, W. Cheikhrouhou-Koubaa, M. Koubaa, A. Cheikhrouhou, J. Alloys Compd. 693, 658 (2017)CrossRefGoogle Scholar
  6. 6.
    J.S. Zhu, J.B. Liu, H. Wang, M.K. Zhu, H. Yan, Cryst. Res. Technol. 42, 241 (2007)CrossRefGoogle Scholar
  7. 7.
    J. Deng, H. Dai, H. Jiang, L. Zhang, G. Wang, H. He, C.T. Au, Environ. Sci. Technol. 44, 2618 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    J.Y. Wang, P.Y. Kuang, N. Li, Z.Q. Liu, Y.Z. Su, S. Chen, Ceram. Int. 41, 8670 (2015)CrossRefGoogle Scholar
  9. 9.
    R. Bujakiewicz-Koronska, D.M. Nalecz, A.M. Majcher, E. Juszynska-Galazka, M. Galazka, L. Vasylechko, E. Markiewicz, D. Majda, A. Kalvane, K. Koronski, J. Eur. Ceram. Soc. 37, 1477 (2017)CrossRefGoogle Scholar
  10. 10.
    R.P. Pawar, V. Puri, Ceram. Int. 40, 10423 (2014)CrossRefGoogle Scholar
  11. 11.
    T. Negas, R.S. Roth, J. Solid State Chem. 1, 409 (1970)ADSCrossRefGoogle Scholar
  12. 12.
    K.J. Lee, E. Iguchi, J. Solid State Chem. 114, 242 (1995)ADSCrossRefGoogle Scholar
  13. 13.
    E. Markiewicz, R. Bujakiewicz-Koronska, A. Budziak, A. Kalvane, D.M. Nalecz, Phase Transitions 87, 1060 (2014)CrossRefGoogle Scholar
  14. 14.
    N. Pandey, A.K. Thakur, Adv. Appl. Ceram. 109, 83 (2010)CrossRefGoogle Scholar
  15. 15.
    I.N. González-Jiménez, A. Torres-Pardo, A.E. Sánchez-Peláez, A. Gutiérrez, M. García-Hernández, J.M. González-Calbet, A. Varela, Chem. Mater. 26, 2256 (2014)CrossRefGoogle Scholar
  16. 16.
    S.I. Hashimoto, H. Iwahara, Mater. Res. Bull. 35, 2253 (2000)CrossRefGoogle Scholar
  17. 17.
    J. Ryu, T. Noh, Y.N. Kim, H. Lee, J. Electrochem. Soc. 163, F657 (2016)CrossRefGoogle Scholar
  18. 18.
    T.V. Bukharkina, N.G. Digurov, Org. Process Res. Devel. 8, 320 (2004)CrossRefGoogle Scholar
  19. 19.
    S. Kawasaki, K. Kamata, M. Hara, ChemCatChem 8, 3247 (2016)CrossRefGoogle Scholar
  20. 20.
    H.A. Tahini, X. Tan, U. Schwingenschlögl, S.C. Smith, ACS Catal. 6, 5565 (2016)CrossRefGoogle Scholar
  21. 21.
    A. Rizzuti, M. Viviani, A. Corradi, P. Nanni, C. Leonelli, Solid State Phenom. 128, 21 (2007)CrossRefGoogle Scholar
  22. 22.
    H. Rietveld, J. Appl. Crystallogr. 2, 65 (1969)CrossRefGoogle Scholar
  23. 23.
    J.R. Rodríguez-Carvajal, Fullprof Suite (2006) available at https://www.ill.eu/sites/fullprof/
  24. 24.
    V.R. Channu, R. Holze, E.H. Walker, New J. Glass Ceram. 3, 29 (2013)CrossRefGoogle Scholar
  25. 25.
    N. Pandey, A.K. Thakur, Adv. Appl. Ceram. 109, 83 (2010)CrossRefGoogle Scholar
  26. 26.
    L. Suescun, O. Chmaissem, J. Mais, B. Dabrowski, J.D. Jorgensen, J. Solid State Chem. 180, 1698 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    A. Maignan, S. Hebert, N. Nguyen, V. Pralong, D. Pelloquin, V. Caignaert, J. Magn. & Magn. Mater. 303, 197 (2006)ADSCrossRefGoogle Scholar
  28. 28.
    N.E. Trofimenko, H. Ullmann, J. Eur. Ceram. Soc. 20, 1241 (2000)CrossRefGoogle Scholar
  29. 29.
    R.T. Shannon, Acta Crystallogr. Sect. A 32, 751 (1976)ADSCrossRefGoogle Scholar
  30. 30.
    R. Ang, Y.P. Sun, X.B. Zhu, W.H. Song, X.G. Luo, X.H. Chen, Solid State Commun. 138, 255 (2006)ADSCrossRefGoogle Scholar
  31. 31.
    D. Makovec, T. Goršak, K. Zupan, D. Lisjak, J. Cryst. Growth 375, 78 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    A.R. West, Solid State Chemistry and its Applications (John Wiley & Sons, 2007)Google Scholar
  33. 33.
    M. Shen, S. Ge, W. Cao, J. Phys. D 34, 2935 (2001)ADSCrossRefGoogle Scholar
  34. 34.
    D.C. Sinclair, Bol. Soc. Esp. Cerám. Vidrio 34, 55 (1995)Google Scholar
  35. 35.
    H. Sakai, S. Ishiwata, D. Okuyama, A. Nakao, H. Nakao, Y. Murakami, Y. Tokura, Phys. Rev. B 82, 180409 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • N. ben Rguiga
    • 1
    • 2
  • I. Álvarez-Serrano
    • 3
  • M. L. López
    • 3
  • W. Chérif
    • 1
    • 2
  • J. A. Alonso
    • 4
  1. 1.Sfax UniversityFaculty of SciencesSfaxTunisia
  2. 2.National School of Engineers of Sfax (ENIS)Laboratory of Electromechanical Systems (LASEM)SfaxTunisia
  3. 3.Dep. Química Inorgánica, Facultad de CC QuímicasUniversidad Complutense de MadridMadridSpain
  4. 4.Instituto de Ciencia de Materiales de Madrid (CSIC)MadridSpain

Personalised recommendations