Advertisement

Numerical study for forced MHD convection heat transfer of a nanofluid in a square cavity with a cylinder of constant heat flux

  • Amin Hassanpour
  • A. A. Ranjbar
  • M. SheikholeslamiEmail author
Regular Article

Abstract.

In this research, flow and forced convection heat transfer of a water-copper nanofluid in the presence of magnetic field is studied. The walls of the square ventilation cavity are insulated. The dominating equations are solved by implementing the finite-volume method (FVM) using the Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) algorithm. The effects of Hartmann number, nanoparticles volume fraction and Reynolds number on the flow and heat transfer characteristics were examined. The results demonstrate that increasing Reynolds and Hartmann numbers lead to increase the average Nusselt number. By evaluating the geometrical parameters, it was found that the size and number of vortices in the flow field decrease by increasing the inlet width. Besides, the increase of the average Nusselt number occurs with the increase of the inlet width. Moreover, it has been observed that the effect of the Hartmann number is more pronounced for higher Reynolds numbers.

References

  1. 1.
    A.E. Kabeel, Emad M.S. El-Said, S.A. Dafea, Renew. Sustain. Energy Rev. 45, 830 (2015)CrossRefGoogle Scholar
  2. 2.
    Xiang-Qi Wang, Arun S. Mujumdar, Int. J. Therm. Sci. 46, 19 (2007)Google Scholar
  3. 3.
    H. Heidary, R. Hosseini, M. Pirmohammadi, M.J. Kermani, J. Magn. & Magn. Mater. 374, 11 (2015)ADSCrossRefGoogle Scholar
  4. 4.
    R. Saidur, K.Y. Leong, H.A. Mohammad, Renew. Sustain. Energy Revi. 15, 1646 (2011)CrossRefGoogle Scholar
  5. 5.
    L.Th. Benos, S.C. Kakarantzas, I.E. Sarris, A.P. Grecos, N.S. Vlachos, Int. J. Heat Mass Transfer 75, 19 (2014)CrossRefGoogle Scholar
  6. 6.
    Fatih Selimefendigil, Hakan F. Öztop, Int. J. Heat Mass Transfer 78, 741 (2014)CrossRefGoogle Scholar
  7. 7.
    B. Pekmen, M. Tezer-Sezgin, Int. J. Heat Mass Transfer 71, 172 (2014)CrossRefGoogle Scholar
  8. 8.
    M.M. Rahman, Hakan F. Öztop, R. Saidur, S. Mekhilef, Khaled Al-Salem, Comp. Fluids 79, 53 (2013)CrossRefGoogle Scholar
  9. 9.
    Xiao-Hong Luo, Ben-Wen Li, Zhang-Mao Hu, Int. J. Heat Mass Transfer 92, 449 (2016)CrossRefGoogle Scholar
  10. 10.
    Fatih Selimefendigil, Hakan F. Öztop, Int. J. Mech. Sci. 118, 113 (2016)CrossRefGoogle Scholar
  11. 11.
    A. Kasaeipoor, B. Ghasemi, S.M. Aminossadati, Int. J. Therm. Sci. 94, 50 (2015)CrossRefGoogle Scholar
  12. 12.
    Mohsen Sheikholeslami Kandelousi, Eur. Phys. J. Plus 129, 248 (2014)CrossRefGoogle Scholar
  13. 13.
    Fatih Selimefendigil, Hakan F. Öztop, Nidal Abu-Hamdeh, Int. Commun. Heat Mass Transf. 71, 9 (2016)CrossRefGoogle Scholar
  14. 14.
    M. Sheikholeslami, M.M. Bhatti, Int. J. Heat Mass Transfer 111, 139 (2017)CrossRefGoogle Scholar
  15. 15.
    R. Azizian, E. Doroodchi, T. McKrell, J. Buongiorno, L.W. Hu, B. Moghtaderi, Int. J. Heat Mass Transfer 68, 94 (2014)CrossRefGoogle Scholar
  16. 16.
    Mohsen Sheikholeslami, Mohadeseh Seyednezhad, Int. J. Heat Mass Transfer 120, 772 (2018)CrossRefGoogle Scholar
  17. 17.
    M. Sheikholeslami, J. Mol. Liq. 249, 1212 (2018)CrossRefGoogle Scholar
  18. 18.
    Mohsen Sheikholeslami, J. Mol. Liq. 249, 921 (2018)CrossRefGoogle Scholar
  19. 19.
    M. Sheikholeslami, Houman B. Rokni, Int. J. Heat Mass Transfer 118, 823 (2018)CrossRefGoogle Scholar
  20. 20.
    M. Sheikholeslami, J. Mol. Liq. 249, 739 (2018)CrossRefGoogle Scholar
  21. 21.
    Fatih Selimefendigil, Hakan F. Öztop, Int. J. Heat Mass Transfer 108, 156 (2017)CrossRefGoogle Scholar
  22. 22.
    Fatih Selimefendigil, Hakan F. Öztop, J. Taiwan Inst. Chem. Eng. 45, 2150 (2014)CrossRefGoogle Scholar
  23. 23.
    Fatih Selimefendigil, Hakan F. Öztop, Int. J. Heat Mass Transfer 98, 40 (2016)CrossRefGoogle Scholar
  24. 24.
    E. Abu-Nada, Z. Masoud, A. Hijazi, Int. Commun. Heat Mass Transf. 35, 657 (2008)CrossRefGoogle Scholar
  25. 25.
    I.E. Sarris, G.K. Zikos, A.P. Grecos, N.S. Vlachos, Numeri. Heat Transf. B 50, 157 (2006)ADSCrossRefGoogle Scholar
  26. 26.
    Khalil Khanafer, Kambiz Vafai, Marilyn Lightstone, Int. J. Heat Mass Transfer 19, 3639 (2003)CrossRefGoogle Scholar
  27. 27.
    Eiyad Abu-Nada, Ziyad Masoud, Hakan F. Oztop, Antonio Campo, Int. J. Therm. Sci. 49, 479 (2010)CrossRefGoogle Scholar
  28. 28.
    H.C. Brinkman, J. Chem. Phy. 20, 571 (1952)ADSCrossRefGoogle Scholar
  29. 29.
    L.H. Back, Int. J. Heat Mass Transfer 11, 1621 (1968)CrossRefGoogle Scholar
  30. 30.
    S.M. Aminossadati, A. Raisi, B. Ghasemi, Int. J. Non-Linear Mech. 46, 1373 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Amin Hassanpour
    • 1
  • A. A. Ranjbar
    • 2
  • M. Sheikholeslami
    • 2
    Email author
  1. 1.Department of Mechanical EngineeringMazandaran University of Science and TechnologyBabolIran
  2. 2.Department of Mechanical EngineeringBabol Noshirvani University of TechnologyBabolIran

Personalised recommendations