Radioactivity, radiological risk and metal pollution assessment in marine sediments from Calabrian selected areas, southern Italy

  • F. CaridiEmail author
  • M. Messina
  • G. Faggio
  • S. Santangelo
  • G. Messina
  • G. Belmusto
Regular Article


The two most significant categories of physical and chemical pollutants in sediments (radionuclides and metals) were investigated in this article, in order to evaluate pollution levels in marine sediments from eight different selected sites of the Calabria region, south of Italy. In particular samples were analyzed to determine natural and anthropic radioactivity and metal concentrations, in order to assess any possible radiological hazard, the level of contamination and the possible anthropogenic impact in the investigated area. Activity concentrations of 226Ra, 232Th, 40K and 137Cs were measured by High Purity Germanium (HPGe) gamma spectrometry. The obtained results show that, for radium (in secular equilibrium with uranium), the specific activity ranges from (\( 14 \pm 1\)) Bq/kg dry weight (d.w.) to (\( 54 \pm 9\)) Bq/kg d.w.; for thorium, from (\( 12 \pm 1\)) Bq/kg d.w. to (\( 83 \pm 8\)) Bq/kg d.w.; for potassium, from (\( 470 \pm 20\)) Bq/kg d.w. to (\( 1000 \pm 70\)) Bq/kg d.w. and for cesium it is lower than the minimum detectable activity value. The absorbed gamma dose rate in air (D), the annual effective dose equivalent (AEDE) outdoor and the external hazard index (\( H_{\rm ex}\)) were calculated to evaluate any possible radiological risk, mainly due to the use of marine sediments for the beach nourishment. The results show low levels of radioactivity, thus discarding any significant radiological risk. Some metals (As, Cd, Crtot, Hg, Ni, Pb, Cu, Zn, Mn and Fe), that could be released into the environment by both natural and anthropogenic sources, were investigated through inductively coupled plasma mass spectrometry (ICP-MS) measurements and compared with the limits set by the Italian Legislation, to assess any possible contamination. Experimental results show that they are much lower than the contamination threshold value, thus excluding their presence as pollutants. The degree of sediment contaminations were quantified using enrichment factor (EF) and geoaccumulation index ( Igeo) for some potential hazardous elements. Results show that EF and Igeo values of As, Pb and Mn were the greatest among the studied metals. Data of this preliminary study could be helpful in the future to obtain background levels in marine sediments of the investigated region and to develop environmental regulatory frameworks.


  1. 1.
    R. Ravisankar, A. Chandrasekaran, P. Vijayagopal et al., Rad. Phys. Chem. 81, 1789 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    A. Navas, J. Soto, J. Machin, Appl. Radiat. Isot. 57, 579 (2002)CrossRefGoogle Scholar
  3. 3.
    M. Eisenbud, Environmental Radioactivity (Academic Press, USA, 1987)Google Scholar
  4. 4.
    IAEA, Guidelines for radioelement mapping using gamma ray spectrometry data (IAEA-TECDOC-1363, 2003)Google Scholar
  5. 5.
    F. Caridi, S. Marguccio, M. D'Agostino, A. Belvedere, G. Belmusto, Eur. Phys. J. Plus 131, 155 (2016)CrossRefGoogle Scholar
  6. 6.
    D.M. Hamby, A.K. Tynybekov, Environ. Monit. Assess. 73, 101 (2000)CrossRefGoogle Scholar
  7. 7.
    F. Caridi, M. D'Agostino, A. Belvedere, S. Marguccio, G. Belmusto, J. Instrum. 11, P05012 (2016)CrossRefGoogle Scholar
  8. 8.
    F. Caridi, G. Belmusto, Cogent Phys. 4, 1354957 (2017)CrossRefGoogle Scholar
  9. 9.
    F. Caridi, M. Messina, M. D'Agostino, Environm. Earth Sci. 76, 668 (2017)CrossRefGoogle Scholar
  10. 10.
    F. Caridi, S. Marguccio, A. Belvedere, G. Belmusto, G. Marcianò, G. Sabatino, A. Mottese, Environm. Earth Sci. 75, 629 (2016)CrossRefGoogle Scholar
  11. 11.
    H.D. Livingston, P.P. Povinec, Ocean Coastal Manag. 43, 689 (2000)CrossRefGoogle Scholar
  12. 12.
    X. Lu, X. Zhang, Radiat. Protect. Dosim. 130, 385 (2008)CrossRefGoogle Scholar
  13. 13.
    F. Caridi, M. D'Agostino, S. Marguccio, A. Belvedere, G. Belmusto, G. Marcianò, G. Sabatino, A. Mottese, Eur. Phys. J. Plus 131, 136 (2016)CrossRefGoogle Scholar
  14. 14.
    X. Lu, X. Zhang, F. Wang, China. Environ. Geol. 53, 1475 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    A.P. Mucha, M.T.S.D. Vasconcelos, A.A. Bordalo, Environm. Poll. 121, 169 (2003)CrossRefGoogle Scholar
  16. 16.
    P.A. Reis, J.C. Antunes, C. Marisa, R. Almeida, Environm. Monit. Assess. 159, 191 (2009)CrossRefGoogle Scholar
  17. 17.
    A. Naji, A. Ismail, Environm. Asia 4, 30 (2011)Google Scholar
  18. 18.
    F. Caridi, S. Marguccio, G. Durante, R. Trozzo, F. Fullone, A. Belvedere, M. D'Agostino, G. Belmusto, Eur. Phys. J. Plus 132, 56 (2017)CrossRefGoogle Scholar
  19. 19.
    F. Caridi, M. D'Agostino, A. Belvedere, S. Marguccio, G. Belmusto, M.F. Gatto, J. Instrum. 11, C10012 (2016)CrossRefGoogle Scholar
  20. 20.
    Ortec Gamma vision-32 v. 6 (2010)Google Scholar
  21. 21.
    O. Sima, Health Phys. 62, 445 (1992)CrossRefGoogle Scholar
  22. 22.
    V. Ramasamy, G. Suresh, V. Meenakshisundaram, V. Ponnusamy, Appl. Radiat. Isot. 69, 184 (2011)CrossRefGoogle Scholar
  23. 23.
    United Nations Scientific Committee on Effects of Atomic Radiation, Exposures from Natural Radiation Sources (UNSCEAR, New York, 2000)Google Scholar
  24. 24.
    United Nations Scientific Committee on Effects of Atomic Radiation, Sources and Effects of Ionizing Radiations (UNSCEAR, New York, 1993)Google Scholar
  25. 25.
    J. Beretka, P.J. Mathew, Health Phys. 48, 87 (1985)CrossRefGoogle Scholar
  26. 26.
    EPA Method, Microwave assisted acid digestion of sediments, sludges, soils, and oils (2007) 3051 aGoogle Scholar
  27. 27.
    F. Caridi, M. D'Agostino, M. Messina, G. Marcianò, L. Grioli, A. Belvedere, S. Marguccio, G. Belmusto, Eur. Phys. J. Plus 132, 189 (2017)CrossRefGoogle Scholar
  28. 28.
    A. Naji, A. Ismail, Environ. Asia 4, 30 (2011)Google Scholar
  29. 29.
    Y.Y. Turekian, K.H. Wedephol, Geol. Soc. Am. Bull. 72, 175 (1961)ADSCrossRefGoogle Scholar
  30. 30.
    O. Amaro, G. Neri, M. Tarnatora, Landscape in Progress (University of Reggio Calabria, 2014) Online EditionGoogle Scholar
  31. 31.
    Y. Orgun et al., Appl. Radiat. Isot. 65, 739 (2007)CrossRefGoogle Scholar
  32. 32.
    Italian Legislation (2006) D.Lgs 152, Tab. 2A/3BGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Environmental Protection Agency of Calabria, Italy (ARPACal)Department of Reggio CalabriaReggio CalabriaItaly
  2. 2.Dipartimento di Ingegneria dell’Informazione, delle Infrastrutture e dell’Energia Sostenibile (DIIES)Università “Mediterranea”Reggio CalabriaItaly
  3. 3.Dipartimento di Ingegneria Civile, dell’Energia, dell’Ambiente e dei Materiali (DICEAM)Università “Mediterranea”Reggio CalabriaItaly

Personalised recommendations