Advertisement

Modelling and formation of spatiotemporal patterns of fractional predation system in subdiffusion and superdiffusion scenarios

Regular Article
  • 49 Downloads
Part of the following topical collections:
  1. Focus Point on Modelling Complex Real-World Problems with Fractal and New Trends of Fractional Differentiation

Abstract.

This paper primarily focused on the question of how population diffusion can affect the formation of the spatial patterns in the spatial fraction predator-prey system by Turing mechanisms. Our numerical findings assert that modeling by fractional reaction-diffusion equations should be considered as an appropriate tool for studying the fundamental mechanisms of complex spatiotemporal dynamics. We observe that pure Hopf instability gives rise to the formation of spiral patterns in 2D and pure Turing instability destroys the spiral pattern and results to the formation of chaotic or spatiotemporal spatial patterns. Existence and permanence of the species is also guaranteed with the 3D simulations at some instances of time for subdiffusive and superdiffusive scenarios.

References

  1. 1.
    A.M. Turing, Philos. Trans. R. Soc. B 237, 37 (1952)ADSCrossRefGoogle Scholar
  2. 2.
    Q.X. Liu, Z. Jin, J. Stat. Mech.: Theor. Exp. 2007, P05002 (2007)CrossRefGoogle Scholar
  3. 3.
    J.D. Murray, Mathematical Biology II: Spatial Models and Biomedical Applications (Springer, Berlin, 2003)Google Scholar
  4. 4.
    W. Wang Q.X. Liu, Z. Jin, Phys. Rev. E 75, 051913 (2007)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    C.S. Holling, Can. Entomol. 91, 293 (1959)CrossRefGoogle Scholar
  6. 6.
    C.S. Holling, Can. Entomol. 91, 385 (1959)CrossRefGoogle Scholar
  7. 7.
    M. Denny, Bull. Ecol. Soc. Am. 95, 200 (2014)CrossRefGoogle Scholar
  8. 8.
    B. Yang, Discret. Dyn. Nat. Soc. 2013, 454209 (2013)Google Scholar
  9. 9.
    J.R. Beddington, J. Anim. Ecol. 44, 331 (1975)CrossRefGoogle Scholar
  10. 10.
    D.T. Dimitrov, H.V. Kojouharov, Appl. Math. Comput. 162, 523 (2005)MathSciNetGoogle Scholar
  11. 11.
    L. Xue, Physica A 391, 5987 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    M. Hassell, C. Varley, Nature 223, 1133 (1969)ADSCrossRefGoogle Scholar
  13. 13.
    P. Crowley, E. Martin, J. North Am. Benthol. Soc. 8, 211 (1989)CrossRefGoogle Scholar
  14. 14.
    X. Shi, X. Zhou, X. Song, J. Appl. Math. Comput. 36, 459 (2011)MathSciNetCrossRefGoogle Scholar
  15. 15.
    M.R. Garvie, Bull. Math. Biol. 69, 931 (2007)MathSciNetCrossRefGoogle Scholar
  16. 16.
    R. Tian, Ecol. Model. 193, 363 (2006)CrossRefGoogle Scholar
  17. 17.
    I. Pearce, M. Chaplain, P. Schofield, A. Anderson, S. Hubbard, J. Theor. Biol. 241, 876 (2006)CrossRefGoogle Scholar
  18. 18.
    K. Uriu, Y. Iwasa, Bull. Math. Biol. 69, 2515 (2007)MathSciNetCrossRefGoogle Scholar
  19. 19.
    V. Ivlev, Experimental Ecology of the Feeding Fishes (Yale University Press, New Haven, 1961)Google Scholar
  20. 20.
    A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations (Elsevier, Netherlands, 2006)Google Scholar
  21. 21.
    I. Podlubny, Fractional Differential Equations (Academic Press, New York, 1999)Google Scholar
  22. 22.
    A. Atangana, J. Comput. Phys. 293, 104 (2015)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    A. Atangana, Appl. Math. Comput. 273, 948 (2016)MathSciNetGoogle Scholar
  24. 24.
    A. Atangana, B.S.T. Alkahtani, Arab. J. Geosci. 9, 8 (2016)CrossRefGoogle Scholar
  25. 25.
    A. Atangana, R.T. Alqahtani, Adv. Differ. Equ. 2016, 156 (2016)CrossRefGoogle Scholar
  26. 26.
    A. Atangana, D. Baleanu, Therm. Sci. 20, 763 (2016)CrossRefGoogle Scholar
  27. 27.
    A. Atangana, I. Koca, Chaos, Solitons Fractals 89, 447 (2016)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    K.M. Owolabi, Chaos, Solitons Fractals 93, 89 (2016)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    K.M. Owolabi, A. Atangana, J. Comput. Nonlinear Dyn. 12, 031010 (2016)CrossRefGoogle Scholar
  30. 30.
    K.M. Owolabi, Commun. Nonlinear Sci. Numer. Simul. 44, 304 (2017)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    A. Bueno-Orovio, D. Kay, K. Burrage, BIT Numer. Math. 54, 937 (2014)CrossRefGoogle Scholar
  32. 32.
    M.M. Meerschaert, C. Tadjeran, Appl. Numer. Math. 56, 80 (2006)MathSciNetCrossRefGoogle Scholar
  33. 33.
    H.K. Pang, H.W. Sun, J. Comput. Phys. 231, 693 (2012)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    F. Liu, P. Zhuang, V. Anh, I. Turner, K. Burrage, Appl. Math. Comput. 191, 12 (2007)MathSciNetGoogle Scholar
  35. 35.
    Q. Liu, F. Liu, Y. Gu, P. Zhuang, J. Chen, I. Turner, Appl. Math. Comput. 256, 930 (2015)MathSciNetGoogle Scholar
  36. 36.
    K.M. Owolabi, K.C. Patidar, Appl. Math. Comput. 240, 30 (2014)MathSciNetGoogle Scholar
  37. 37.
    K.M. Owolabi, K.C. Patidar, Int. J. Nonlinear Sci. Numer. Simul. 15, 437 (2014)MathSciNetCrossRefGoogle Scholar
  38. 38.
    K.M. Owolabi, Int. J. Nonlinear Sci. Numer. Simul. 16, 271 (2015)MathSciNetGoogle Scholar
  39. 39.
    M.D. Ortigueira, Int. J. Math. Math. Sci. 2006, 48391 (2006)CrossRefGoogle Scholar
  40. 40.
    M.D. Ortigueira, J.J. Trujillo, Commun. Nonlinear Sci. Numer. Simul. 17, 5151 (2012)ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    Q. Yang, I. Turner, F. Liu, M. Ilic, SIAM J. Sci. Comput. 33, 1159 (2011)MathSciNetCrossRefGoogle Scholar
  42. 42.
    H. Wang, K. Wang, T. Sircar, J. Comput. Phys. 229, 8095 (2010)ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    H. Wang, N. Du, J. Comput. Phys. 240, 49 (2013)ADSMathSciNetCrossRefGoogle Scholar
  44. 44.
    G.W. Griffiths, W.E. Schiesser, Traveling Wave Analysis of Partial Differential Equations: Numerical and Analytical Methods with MATLAB and Maple (Academic Press, New York, 2012)Google Scholar
  45. 45.
    C. Lubich, SIAM J. Math. Anal. 17, 704 (1986)MathSciNetCrossRefGoogle Scholar
  46. 46.
    H.M. Ozaktas, Z. Zalevsky, M.A. Kutay, The Fractional Fourier Transform (Wiley, Chichester, 2001)Google Scholar
  47. 47.
    S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications (Gordon and Breach, Amsterdam, 1993)Google Scholar
  48. 48.
    S. Samko, Stud. Math. 113, 199 (1995)CrossRefGoogle Scholar
  49. 49.
    A.A. Kilbas, Yu.F. Luchko, H. Martnezc, J.J. Trujillod, Integr. Transf. Spec. Funct. 21, 779 (2010)CrossRefGoogle Scholar
  50. 50.
    A.H. Bhrawy, M.A. Zaky, R.A. Van Gorder, Numer. Algorithms 71, 151 (2016)MathSciNetCrossRefGoogle Scholar
  51. 51.
    A.H. Bhrawy, M.A. Abdelkawy, J. Comput. Phys. 294, 462 (2015)ADSMathSciNetCrossRefGoogle Scholar
  52. 52.
    A.H. Bhrawy, Numer. Algorithms 73, 91 (2016)MathSciNetCrossRefGoogle Scholar
  53. 53.
    K.M. Owolabi, A. Atangana, Eur. Phys. J. Plus 131, 335 (2016)CrossRefGoogle Scholar
  54. 54.
    K. Maleknejad, S. Sohrabi, Y. Rostami, Appl. Math. Comput. 188, 123 (2007)MathSciNetGoogle Scholar
  55. 55.
    S.M. Cox, P.C. Matthews, J. Comput. Phys. 176, 430 (2002)ADSMathSciNetCrossRefGoogle Scholar
  56. 56.
    J.D. Murray, Mathematical Biology I: An Introduction (Springer, New York, 2002)Google Scholar
  57. 57.
    K.M. Owolabi, J. Numer. Math. 25, 1 (2016) DOI 0.1515/jnma-2015-0094MathSciNetCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for Groundwater Studies, Faculty of Natural and Agricultural SciencesUniversity of the Free StateBloemfonteinSouth Africa

Personalised recommendations