Exploring the gauge/gravity duality of a generalized von Neumann entropy

  • Nana Cabo BizetEmail author
  • Octavio Obregón
Regular Article


We consider a generalized von Neumann entropy that depends only on the density matrix. This is based on a modification of Boltzmann-Gibbs entropy by considering non-equilibrium systems on stationary states, and an entropy functional depending only on the probability. We propose a generalization of the replica trick and find that the resulting modified von Neumann entropy is precisely the previously mentioned entropy that was obtained by other assumptions. Then, we address the question whether alternative entanglement entropies can play a role in the gauge/gravity duality. Our focus are 2d CFT and their gravity duals. Our results show corrections to the von Neumann entropy S0. If the central charge is small/large they are correspondingly larger/smaller than the usual UV ones and also than the corrections to the corresponding minimal length in AdS3, which are comparable to the UV ones. This agrees with previous results indicating that the generalized entropy is more relevant for systems with fewer degrees of freedom. The correction terms due to the new entropy would modify the Ryu-Takayanagi identification between the CFT and the gravitational AdS3 minimal length. We discuss the ingredients for computing the corresponding gravity duals of generalized entanglement entropies.


  1. 1.
    O. Obregón, Entropy 12, 2067 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    O. Obregón, A. Gil-Villegas, Phys. Rev. E 88, 062146 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    C. Beck, E. Cohen, Physica A 322, 267 (2003)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    A. Gil, O. Obregón, J. Torres-Arenas, J. Mol. Liq. 248, 364 (2017)CrossRefGoogle Scholar
  5. 5.
    C. Tsallis, J. Stat. Phys. 52, 479 (1988)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    C. Tsallis, A. Souza, Phys. Rev. E 2004, 026106 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    L. Boltzmann, Vorlesungen über Gastheorie, Vols. 1, 2 (Leipzig, 1895/98) UB: O 5262-6Google Scholar
  8. 8.
    J.W. Gibbs, On the Equilibrium of Heterogeneous Substances, Trans. Conn. Acad. Arts Sci. Vol. 3 (1874-1878) pp. 108--248, 343--524Google Scholar
  9. 9.
    F. Holzhey, F. Larsen, F. Wilczek, Nucl. Phys. B 424, 443 (1994)ADSCrossRefGoogle Scholar
  10. 10.
    C. Pasquale, J. Cardy, J. Stat. Mech. 2004, P06002 (2004)Google Scholar
  11. 11.
    P. Calabrese, J. Cardy, J. Phys. A 42, 504005 (2009) arXiv:0905.4013 [cond-mat.stat-mech]MathSciNetCrossRefGoogle Scholar
  12. 12.
    S. Ryu, T. Takayanagi, Phys. Rev. Lett. 96, 181602 (2006) arXiv:hep-th/0603001 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    S. Ryu, T. Takayanagi, JHEP 08, 045 (2006) arXiv:hep-th/0605073 [hep-th]ADSCrossRefGoogle Scholar
  14. 14.
    V. Hubeny, M. Rangamani, T. Takayanagi, JHEP 07, 062 (2007) arXiv:0705.0016 [hep-th]ADSCrossRefGoogle Scholar
  15. 15.
    T. Nishioka, S. Ryu, T. Takayanagi, J. Phys. A 42, 504008 (2009) arXiv:0905.0932 [hep-th]MathSciNetCrossRefGoogle Scholar
  16. 16.
    H. Casini, M. Huerta, R. Myers, JHEP 05, 036 (2011) arXiv:1102.0440 [hep-th]ADSCrossRefGoogle Scholar
  17. 17.
    D. Fursaev, JHEP 09, 018 (2006) arXiv:hep-th/0606184 [hep-th]ADSCrossRefGoogle Scholar
  18. 18.
    M. Headrick, Phys. Rev. D 82, 126010 (2010) arXiv:1006.0047 [hep-th]ADSCrossRefGoogle Scholar
  19. 19.
    A. Lewkowycz, J. Maldacena, JHEP 08, 090 (2013) arXiv:1304.4926 [hep-th]ADSCrossRefGoogle Scholar
  20. 20.
    T. Faulkner, arXiv:1303.7221 [hep-th]Google Scholar
  21. 21.
    T. Hartman, arXiv:1303.6955 [hep-th]Google Scholar
  22. 22.
    J. Maldacena, L. Susskind, Fortschr. Phys. 61, 781 (2013) arXiv:1306.0533 [hep-th]MathSciNetCrossRefGoogle Scholar
  23. 23.
    J. Camps, JHEP 03, 070 (2014) arXiv:1310.6659 [hep-th]ADSCrossRefGoogle Scholar
  24. 24.
    X. Dong, Nat. Commun. 7, 12472 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    S. Bhattacharyya, V.E. Hubeny, S. Minwalla, M. Rangamani, JHEP 02, 045 (2008) arXiv:0712.2456 [hep-th]ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Física, División de Ciencias e IngenierıasCampus León, Universidad de GuanajuatoLeón, GuanajuatoMexico
  2. 2.Mandelstam Institute for Theoretical Physics, School of Physics, and National Institute for Theoretical PhysicsUniversity of the WitwatersrandJohannesburgSouth Africa

Personalised recommendations