Advertisement

Study of the charged spherical stellar model in f(R) gravity

  • M. SharifEmail author
  • Naila Farooq
Regular Article

Abstract.

This paper is devoted to studying the dynamics of the charged spherical stellar model in f(R) gravity. We match the interior region incorporating a perfect fluid with the exterior spacetime through junction conditions and we construct dynamical equations via the Misner-Sharp formalism. The coupling of dynamical equations with the energy of the system describe the rate of collapse for both constant as well as general curvature terms. Finally, we develop a relationship between matter variables, dark source terms and the Weyl scalar. It is concluded that the energy density homogeneity exists if and only if the metric is conformally flat while the rate of collapse is found to be diminishing.

References

  1. 1.
    K. Lake, C. Hellaby, Phys. Rev. D 24, 3019 (1981)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    P.S. Joshi, T.P. Singh, Phys. Rev. D 51, 6778 (1995)ADSCrossRefGoogle Scholar
  3. 3.
    C.W. Misner, D. Sharp, Phys. Rev. B 136, 571 (1964)ADSCrossRefGoogle Scholar
  4. 4.
    C.W. Misner, D. Sharp, Phys. Rev. B 137, 1360 (1965)CrossRefGoogle Scholar
  5. 5.
    R. Chan, Mon. Not. R. Astron. Soc. 316, 588 (2000)ADSCrossRefGoogle Scholar
  6. 6.
    M. Sharif, Z. Ahmed, Mod. Phys. Lett. A 22, 1493 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    S. Nath, U. Debnath, S. Chakraborty, Astrophys. Space Sci. 313, 431 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    M. Sharif, G. Abbas, Mod. Phys. Lett. A 24, 2551 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    M. Sharif, G. Abbas, J. Korean Phys. Soc. 56, 529 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    G.Abbas, Astrophys. Space Sci. 352, 955 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    M. Sharif, H.R. Kausar, Astrophys. Space Sci. 331, 281 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    C.Y. Zhang, Z.Y. Tang, B. Wang, Phys. Rev. D 94, 104013 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    H.R. Kausar, I. Noureen, Eur. Phys. J. C 74, 2760 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    S. Chakrabarti, N. Banerjee, Astrophys. Space Sci. 354, 571 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    G. Abbas et al., Eur. Phys. J. C 77, 443 (2017)ADSCrossRefGoogle Scholar
  16. 16.
    M. Sharif, N. Farooq, Eur. Phys. J. Plus 132, 355 (2017)CrossRefGoogle Scholar
  17. 17.
    M. Sharif, N. Farooq, Int. J. Mod. Phys. D 27, 1850013 (2018)ADSCrossRefGoogle Scholar
  18. 18.
    T.P. Sotiriou, V. Faraoni, Rev. Mod. Phys. 82, 451 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    H.R. Kausar, Eur. Phys. J. C 77, 355 (2017)ADSCrossRefGoogle Scholar
  20. 20.
    M. Sharif, G. Abbas, Astrophys. Space Sci. 335, 515 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    W.B. Bonnor, P.A. Vickers, Gen. Relativ. Gravit. 13, 29 (1981)ADSCrossRefGoogle Scholar
  22. 22.
    J.P.W. Taylor, Class. Quantum. Grav. 21, 3705 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    M. Sharif, S. Fatima, Gen. Relativ. Gravit. 43, 127 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of the PunjabLahorePakistan

Personalised recommendations