Advertisement

Bright and dark N-soliton solutions for the (2 + 1)-dimensional Maccari system

  • Lei Liu
  • Bo TianEmail author
  • Yu-Qiang Yuan
  • Yan Sun
Regular Article

Abstract.

Under investigation in this paper is the (2 + 1) -dimensional Maccari system, which is related to the Kadomtsev-Petviashvili (KP) equation. Bright and dark N -soliton solutions in terms of the Gramian are obtained via the KP hierarchy reduction. Oblique and parallel interactions between the bright solitons and between the dark solitons are studied analytically and graphically. We find that there are elastic and inelastic interactions for the bright solitons, but there are only elastic interactions for the dark solitons. Resonance, breather, attraction and repulsion structures are presented. It is expected that these soliton interactions have potential applications in fluid dynamics, nonlinear optics and plasma physics.

References

  1. 1.
    G.P. Agrawal, Nonlinear Fiber Optics (Academic Press, New York, 2007)Google Scholar
  2. 2.
    M.J. Ablowitz, P.A. Clarkson, Nonlinear Evolution Equations and Inverse Scattering (Cambridge University Press, Cambridge, 1991)Google Scholar
  3. 3.
    L. Wang, J.H. Zhang, C. Liu, M. Li, F.H. Qi, Phys. Rev. E 93, 062217 (2016)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    L. Wang, Y.J. Zhu, F.H. Qi, M. Li, R. Guo, Chaos 25, 063111 (2015)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    N.J. Zabusky, M.D. Kruskal, Phys. Rev. Lett. 15, 240 (1965)ADSCrossRefGoogle Scholar
  6. 6.
    B.B. Kadomtsev, V.I. Petviashvili, Sov. Phys. Dokl. 15, 539 (1970)ADSGoogle Scholar
  7. 7.
    M. Ablowitz, Nonlinear Dispersive Waves, Asymptotic Analysis and Solitons (Cambridge University Press, Cambridge, 2011)Google Scholar
  8. 8.
    L. Wang, J.H. Zhang, Z.Q. Wang, C. Liu, M. Li, F.H. Qi, R. Guo, Phys. Rev. E 93, 012214 (2016)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    L. Wang, Y.J. Zhu, Z.Q. Wang, T. Xu, F.H. Qi, Y.S. Xu, J. Phys. Soc. Jpn. 85, 024001 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    X.Y. Tang, S.Y. Lou, Y. Zhang, Phys. Rev. E 66, 1 (2002)CrossRefGoogle Scholar
  11. 11.
    X.Y. Tang, J.M. Li, S.Y. Lou, Phys. Scr. 75, 201 (2007)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    M. Boiti, L. Martina, O.K. Pashaev, F. Pempinelli, Phys. Lett. A 160, 55 (1991)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    R. Hirota, The Direct Method in Soliton Theory (Cambridge University Press, Cambridge, 2004)Google Scholar
  14. 14.
    V.B. Matveev, M.A. Salle, Darboux Transformations and Solitons (Springer, Berlin, 1991)Google Scholar
  15. 15.
    M.J. Ablowitz, H. Segur, J. Fluid Mech. 92, 691 (1979)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    M.J. Ablowitz, D.E. Baldwin, Phys. Rev. E 86, 036305 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    A. Maccari, J. Math. Phys. 37, 6207 (1996)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    K. Porsezian, J. Math. Phys. 38, 4675 (1997)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    H. Zhao, Chaos, Solitons Fractals 36, 359 (2008)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    C. Ye, W. Zhang, Chaos, Solitons Fractals 44, 1063 (2011)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    N. Cheemaa, M. Younis, Nonlinear Dyn. 83, 1395 (2016)CrossRefGoogle Scholar
  22. 22.
    H.L. Zhen, B. Tian, W.R. Sun, Appl. Math. Lett. 27, 90 (2014)MathSciNetCrossRefGoogle Scholar
  23. 23.
    G.F. Yu, Z.W. Xu, Phys. Rev. E 91, 062902 (2015)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    C.Q. Dai, Y.Y. Wang, Indian J. Phys. 87, 679 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    C. Wang, Z. Dai, C. Liu, Adv. Math. Phys. 2015, 861069 (2015)Google Scholar
  26. 26.
    G.H. Wang, L.H. Wang, J.G. Rao, J.S. He, Commun. Theor. Phys. 67, 601 (2017)ADSCrossRefGoogle Scholar
  27. 27.
    M. Jimbo, T. Miwa, Publ. RIMS 19, 943 (1983)CrossRefGoogle Scholar
  28. 28.
    C. Gilson, J. Hietarinta, J. Nimmo, Y. Ohta, Phys. Rev. E 68, 016614 (2003)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    Y. Ohta, AIP Conf. Proc. 1212, 114 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    Y. Ohta, D.S. Wang, J. Yang, Stud. Appl. Math. 127, 345 (2011)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Y. Ohta, J. Yang, Proc. R. Soc. A 468, 1716 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    B.F. Feng, J. Phys. A 47, 355203 (2014)MathSciNetCrossRefGoogle Scholar
  33. 33.
    J. Chen, Y. Chen, B.F. Feng, K. Maruno, J. Phys. Soc. Jpn. 84, 074001 (2015)ADSCrossRefGoogle Scholar
  34. 34.
    J. Chen, Y. Chen, B.F. Feng, K. Maruno, Phys. Lett. A 379, 1510 (2015)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    J.W. Yang, Y.T. Gao, C.Q. Su, C. Zhao, Y.J. Feng, Comput. Math. Appl. 72, 2685 (2016)MathSciNetCrossRefGoogle Scholar
  36. 36.
    J.W. Yang, Y.T. Gao, Y.H. Sun, Y.J. Shen, C.Q. Su, Eur. Phys. J. Plus 131, 416 (2016)CrossRefGoogle Scholar
  37. 37.
    G. Mu, Z. Qin, Nonlinear Anal. 18, 1 (2014)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Information Photonics and Optical Communications, and School of ScienceBeijing University of Posts and TelecommunicationsBeijingChina

Personalised recommendations