Mesoporous TiO2 and copper-modified TiO2 nanoparticles: A case study

  • R. Ajay Kumar
  • V. G. Vasavi Dutt
  • Ch. RajeshEmail author
Regular Article


In this paper we report the synthesis of mesoporous titanium dioxide (M-TiO2) nanoparticles (NPs) and copper (Cu)-modified M-TiO2 NPs by the hydrothermal method at relatively low temperatures using cetyltrimethylammonium bromide (CTAB) as a template. In order to get ordered spherical particles and better interaction between cationic and anionic precursor, we have used titanium isopropoxide (TTIP) as titanium source and CTAB as surfactant. The process of modification by copper to M-TiO2 follows the impregnation method. The change in structural and optical properties of NPs were estimated using different characterization techniques like X-ray diffraction, field emission scanning electron microscopy, Brunner-Emmett-Teller curve and UV-Vis absorption analysis. M-TiO2 and Cu-modified M-TiO2 exhibit pure anatase crystalline phase and shows no evidence of CuO formation. Nitrogen adsorption-desorption hysteresis reveals that the material is mesoporous. Several samples synthesized at different process temperature were further studied in order to make them suitable for a wide range of applications.


  1. 1.
    D.P. Macwan, P.N. Dave, S. Chaturvedi, J. Mater. Sci. 46, 3669 (2011)ADSCrossRefGoogle Scholar
  2. 2.
    Y. Liu, Y. Yang, J. Nanomater. 2016, 8123652 (2016)Google Scholar
  3. 3.
    M. Gratzel, Prog. Photovolt. Res. Appl. 8, 171 (2000)CrossRefGoogle Scholar
  4. 4.
    A. Fujishima, K. Honda, Nature 238, 37 (1972)ADSCrossRefGoogle Scholar
  5. 5.
    A. Zaleska, Recent Pat. Eng. 2, 157 (2008)CrossRefGoogle Scholar
  6. 6.
    D.S. Kim, S.Y. Kwak, Appl. Catal. A 323, 110 (2007)CrossRefGoogle Scholar
  7. 7.
    L. Li, C.Y. Liu, J. Phys. Chem. C 114, 1444 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    H. Wang, Y. Song, W. Liu, S. Yao, W. Zhang, Mater. Lett. 93, 319 (2013)CrossRefGoogle Scholar
  9. 9.
    J.C. Yu, L. Zhang, J. Yu, Chem. Mater. 14, 4647 (2002)CrossRefGoogle Scholar
  10. 10.
    K.J. Hwang, J.W. Lee, S.J. Yoo, S. Jeong, D.H. Jeong, W.G. Shim, D.W. Cho, New J. Chem. 37, 1378 (2013)CrossRefGoogle Scholar
  11. 11.
    Z. Wang, T. Jiang, Y. Du, K. Chen, H. Yin, Mater. Lett. 60, 2493 (2006)CrossRefGoogle Scholar
  12. 12.
    Z. Tan, K. Sato, S. Ohara, Adv. Powder Technol. 26, 296 (2016)CrossRefGoogle Scholar
  13. 13.
    Y. Wang, W. Duan, B. Liu, X. Chen, F. Yang, J. Guo, J. Nanomater. 2014, 178152 (2014)Google Scholar
  14. 14.
    L.S. Yoong, F.K. Chong, B.K. Dutta, J. Energy 34, 1652 (2009)CrossRefGoogle Scholar
  15. 15.
    C. Sangwichien, G.L. Aranovich, M.D. Donohue, Colloids Surf. A 206, 313 (2002)CrossRefGoogle Scholar
  16. 16.
    S. Rtimi, Catalysts 7, 57 (2017)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Advanced Functional Materials Research CentreKoneru Lakshmaiah Education FoundationVaddeswaram, GunturIndia
  2. 2.Department of PhysicsKoneru Lakshmaiah Education FoundationVaddeswaram, GunturIndia

Personalised recommendations