X-ray powder diffraction line broadening analysis of the nanocrystalline tin dioxide by the classical Warren-Averbach approach

  • Hossein Mahmoudi ChenariEmail author
Regular Article


In the present study, the X-ray diffraction line profile analysis technique has been applied to investigating the microstructure of nanocrystaline materials in terms of average crystallite sizes, size distributions and micro strains. We have calculated the size and strain Fourier coefficients by using classical Warren-Averbach method for the two (110) and (220) reflections. Assuming that the grain size distribution in the nanocrystaline SnO2 can be approximated by a log normal function, the area- and volume-weighted average grain size value were estimated as \( 16.14 \pm 0.23\) and \( 19.67 \pm 0.23\) nm, respectively. To validate the results obtained from Warren-Averbach analysis, the obtained size was compared by the SEM results reported in our previous work and the results are in good agreement. The behavior of strain indicates the extent of the inhomogeneous strain distribution which causes the broadening of X-ray line profile in the crystalline lattice of tin dioxide nanoparticles.


  1. 1.
    X. Xiao, G. Dong, J. Shao, H. He, Z. Fan, Appl. Surf. Sci. 256, 1636 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    Z. Ying, Q. Wan, Z.T. Song, S.L. Feng, Nanotechnology 15, 1682 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    P. Scherrer, Nachr. Gesell. Wiss. Gött. Math.-Phys. 2, 98 (1918)Google Scholar
  4. 4.
    G.K. Williamson, W.H. Hall, Acta Metall. 1, 22 (1953)CrossRefGoogle Scholar
  5. 5.
    P.B. Devaraja, D.N. Avadhani, S.C. Prashantha, H. Nagabhushana, S.C. Sharma, B.M. Nagabhushana, H.P. Nagaswarupa, Spectrochim. Acta Part A 118, 847 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    H.M. Rietveld, J. Appl. Cryst. 2, 65 (1969)CrossRefGoogle Scholar
  7. 7.
    K. Santra, P. Chatterjee, S.P. Sengupta, Bull. Mater. Sci. 25, 251 (2002)CrossRefGoogle Scholar
  8. 8.
    P. Bindu, S. Thomas, J. Theor. Appl. Phys. 8, 123 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    B.E. Warren, B.L. Averbach, J. Appl. Phys. 23, 497 (1952)ADSCrossRefGoogle Scholar
  10. 10.
    T. Ungar, A. Borbely, Appl. Phys. Lett. 69, 3173 (1996)ADSCrossRefGoogle Scholar
  11. 11.
    C.E. Krill, R. Birringer, Philos. Mag. A 77, 621 (1998)ADSCrossRefGoogle Scholar
  12. 12.
    S. Mahadevan, S.P. Behera, G. Gnanaprakash, T. Jayakumar, J. Philip, B.P.C. Rao, J. Phys. Chem. Solids 73, 867 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    H. Mahmoudi Chenari, F. Sánchez-Bajo, Mater. Sci. Semicond. Process. 49, 15 (2016)CrossRefGoogle Scholar
  14. 14.
    A. Hassanzadeh, B. Moazzez, H. Haghgooie, M. Nasseri, M.M. Golzan, H. Sedghi, Cent. Eur. J. Chem. 6, 651 (2008)Google Scholar
  15. 15.
    B.E. Warren, B.L. Averbach, J. Appl. Phys. 21, 595 (1950)ADSCrossRefGoogle Scholar
  16. 16.
    B.E. Warren, X-Ray Diffraction (Addison-Wesley, Reading, MA, 1996)Google Scholar
  17. 17.
    A. Guinier, X-ray Diffraction (Freeman, San Francisco, CA, 1963)Google Scholar
  18. 18.
    T. Ungár, Mater. Sci. Eng. 309-310, 14 (2001)CrossRefGoogle Scholar
  19. 19.
    E.F. Bertaut, Acta Crystallogz. 3, 14 (1950)CrossRefGoogle Scholar
  20. 20.
    D. Balzar, Croat. Chem. Acta 69, 1069 (1996)Google Scholar
  21. 21.
    H. Mahmoudi Chenari, L. Weinhardt, N.S. Rodriguez Lastra, M.A. Ernst, F. Reinert, M.M. Golzan, A. Hassanzadeh, Mater. Lett. 85, 168 (2012)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics, Faculty of ScienceUniversity of Guilan, Namjoo AveRashtIran

Personalised recommendations