Dynamical study of a chaotic predator-prey model with an omnivore

  • A. Al-khedhairi
  • A. A. ElsadanyEmail author
  • A. Elsonbaty
  • A. G. Abdelwahab
Regular Article


In this paper, the dynamics and bifurcations of a three-species predator-prey model with an omnivore are further investigated. The food web considered in this work comprises prey, predator and a third species, which consumes the carcasses of the predator along with predation of the original prey. The conditions for existence, uniqueness and continuous dependence on initial conditions for the solution of the model are derived. Analytical and numerical bifurcation studies reveal that the system undergoes transcritical and Hopf bifurcations around its equilibrium points. Further, the Hopf bifurcation curves in the parameters’ space along with codimension two bifurcations of equilibrium points and bifurcation of limit cycles that arise in the system are investigated. In particular, the occurrence of generalized Hopf, fold Hopf and Neimarck-Sacker bifurcations is unveiled and illustrates the rich dynamics of the model. Finally, bifurcation diagrams, phase portraits and Lyapunov exponents of the model are presented.


  1. 1.
    A.J. Lotka, Elements of Physical Biology (Williams and Wilkins, Baltimore, 1925)Google Scholar
  2. 2.
    H.I. Freedman, P. Waltman, Math. Biosci. 33, 257 (1977)MathSciNetCrossRefGoogle Scholar
  3. 3.
    H.I. Freedman, Deterministic Mathematical Models in Population Ecology (Marcle Dekker, New York, 1980)Google Scholar
  4. 4.
    J.D. Murray, Mathematical Biology (Springer-Verlag, New York, 1993)Google Scholar
  5. 5.
    Y. Kuznetsov, S. Rinaldi, Math. Biosci. 134, 1 (1996)MathSciNetCrossRefGoogle Scholar
  6. 6.
    C. Castillo-Chavez, Z. Feng, Math. Biosci. 151, 135 (1998)CrossRefGoogle Scholar
  7. 7.
    M. Kot, Elements of Mathematical Ecology (Cambridge University Press, Cambridge, 2001)Google Scholar
  8. 8.
    C. Castillo-Chavez, B. Song, Math. Biosci. Eng. 1, 361 (2004)MathSciNetCrossRefGoogle Scholar
  9. 9.
    H.I. Freedman, P. Waltman, Math. Biosci. 68, 213 (1984)MathSciNetCrossRefGoogle Scholar
  10. 10.
    L.H. Erbe, H.I. Freedman, V.S.H. Rao, Math. Biosci. 80, 57 (1986)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Jé.M. Gomez, R. Zamora, Ecology 75, 1023 (1994)CrossRefGoogle Scholar
  12. 12.
    Y. Xiao, L. Chen, Math. Biosci. 171, 59 (2001)MathSciNetCrossRefGoogle Scholar
  13. 13.
    S. Ruan, D. Xiao, Siam J. Appl. Math. 61, 1445 (2001)CrossRefGoogle Scholar
  14. 14.
    E. Venturino, IMA J. Math. Appl. Med. Biol. 19, 185 (2002)CrossRefGoogle Scholar
  15. 15.
    P. Keller, E. Venturino, Int. J. Pure Appl. Math. 32, 283 (2006)MathSciNetGoogle Scholar
  16. 16.
    J.J. Tewa, V.Y. Djeumen, D.S. Bowong, Appl. Math. Model. 37, 4825 (2013)MathSciNetCrossRefGoogle Scholar
  17. 17.
    B. Sahoo, S. Poria, Differ. Equ. Dyn. Syst. 22, 221 (2014)MathSciNetCrossRefGoogle Scholar
  18. 18.
    De. Rossi, A.F. Lisa, L. Rubini, A. Zappavigna, E. Venturino, Ecol. Complex. 21, 233 (2015)CrossRefGoogle Scholar
  19. 19.
    S. Sharma, G.P. Samanta, Int. J. Dyn. Control. 3, 210 (2015)MathSciNetCrossRefGoogle Scholar
  20. 20.
    K.K. Gurubilli, P.D.N. Srinivasu, M. Banerjee, Int. J. Dyn. Control. 5, 903 (2017)MathSciNetCrossRefGoogle Scholar
  21. 21.
    A.M. Shehata, A.M. Elaiw, E.K. Elnahary, M. Abul-Ez, Int. J. Dyn. Control. 5, 881 (2017)Google Scholar
  22. 22.
    R. Agrawal, D. Jana, R. Upadhyay, V. Rao, J. Comput. Appl. Math. 55, 513 (2017)CrossRefGoogle Scholar
  23. 23.
    A. Hastings, T. Powell, Ecology 72, 896 (1991)CrossRefGoogle Scholar
  24. 24.
    C.S. Holling, Mem. Entomol. Soc. Can. 45, 3 (1965)Google Scholar
  25. 25.
    E.C. Pielou, Mathematical Ecology (John Wiley and Sons, New York, 1977)Google Scholar
  26. 26.
    R.K. Upadhyay, V. Rai, Chaos, Solitons Fractals 8, 1933 (1997)ADSCrossRefGoogle Scholar
  27. 27.
    C. Zimmer, Science 284, 83 (1999)ADSCrossRefGoogle Scholar
  28. 28.
    N. Massarelli, K. Hoffman, J. Previte, J. Math. Biol. 69, 1609 (2014)MathSciNetCrossRefGoogle Scholar
  29. 29.
    A. Nijamuddin, H. Mainul, V. Ezio, C. Santabrata, Comput. Biol. Med. 85, 63 (2017)CrossRefGoogle Scholar
  30. 30.
    J.M. Cushing, S.M. Henson, R.A. Desharnais, B. Dennis, R.F. Costantino, A. King, Chaos, Solitons Fractals 12, 219 (2001)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    S.L. Pimm, J.H. Lawton, Nature 275, 542 (1978)ADSCrossRefGoogle Scholar
  32. 32.
    S.L. Pimm, Food Webs (Chapman and Hall, 1982)Google Scholar
  33. 33.
    K. Tanabe, T. Namba, Ecology 86, 3411 (2005)CrossRefGoogle Scholar
  34. 34.
    J.P. Previte, K.A. Hoffman, Siam Rev. 55, 523 (2013)MathSciNetCrossRefGoogle Scholar
  35. 35.
    L. Perko, Differential Equations and Dynamical Systems (Springer-Verlag, New York, 2003)Google Scholar
  36. 36.
    S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos (Springer-Verlag, New York, 2003)Google Scholar
  37. 37.
    Y.A. Kuznetsov, Elements of Applied Bifurcation Theory, 3nd ed. (Springer, New York, 2004)Google Scholar
  38. 38.
    V. Lanza, M. Bonnin, M. Gilli, On the Application of the Describing Function Technique to the Bifurcation Analysis of Nonlinear Systems, in IEEE Transactions on Circuits and Systems---II: Express Briefs, Vol. 54, No. 4 (2007) pp. 343--347Google Scholar
  39. 39.
    A.H. Nayfeh, The Method of Normal Forms (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2011)Google Scholar
  40. 40.
    A. Dhooge, W. Govaerts, Y.A. Kuznetsov, ACM Trans. Math. Softw. 29, 141 (2003)CrossRefGoogle Scholar
  41. 41.
    A. Wolf, J.B. Swift, H.L. Swinney, J.A. Vastano, Physica D 16, 285 (1985)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • A. Al-khedhairi
    • 1
  • A. A. Elsadany
    • 2
    Email author
  • A. Elsonbaty
    • 3
  • A. G. Abdelwahab
    • 2
  1. 1.Department of Statistics and Operations Researches, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
  2. 2.Department of Basic Science, Faculty of Computers and InformaticsSuez Canal UniversityIsmailiaEgypt
  3. 3.Department of Mathematics and Engineering Physics, Faculty of EngineeringMansoura UniversityMansouraEgypt

Personalised recommendations