Advertisement

The impact of Fermi motion on the heavy quarkonia fragmentation using the light-cone wave function

  • S. Mohammad Moosavi NejadEmail author
Regular Article

Abstract.

Fragmentation is the dominant mechanism for heavy quarkonia production with large transverse momentum. The study of heavy quarkonium production is a powerful tool to understand the dynamics of strong interactions. In this work, we study the effect of Fermi motion of constituents on the direct fragmentation of the \( J/\psi\) and \( \Upsilon\) states from the gluon using a light-cone wave function. Following this study, we compute the process-independent fragmentation functions (FFs) for a gluon to fragment into these bound states. Consistent with such a wave function we set up the kinematics of a gluon fragmenting into a quarkonium such that the Fermi motion of the constituents splits into longitudinal as well as transverse direction. In all previous calculations of heavy quarkonia FFs, by ignoring the Fermi motion of constituents, a delta function form was approximated for the meson wave function. Here, we present our numerical results for the \( g\rightarrow J/\psi\) and \( g\rightarrow \Upsilon\) FFs and show how the proposed meson wave function improves the previous results.

References

  1. 1.
    N. Brambilla et al., Eur. Phys. J. C 71, 1534 (2011)ADSCrossRefGoogle Scholar
  2. 2.
    E. Braaten, M.A. Doncheski, S. Fleming, M.L. Mangano, Phys. Lett. B 333, 548 (1994)ADSCrossRefGoogle Scholar
  3. 3.
    S.M.M. Nejad, A. Armat, Eur. Phys. J. Plus 128, 121 (2013)CrossRefGoogle Scholar
  4. 4.
    S.M. Moosavi Nejad, P. Sartipi Yarahmadi, Eur. Phys. J. A 52, 315 (2016)ADSCrossRefGoogle Scholar
  5. 5.
    S.M.M. Nejad, M. Delpasand, Int. J. Mod. Phys. A 30, 1550179 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    S.M. Moosavi Nejad, Eur. Phys. J. Plus 130, 136 (2015)CrossRefGoogle Scholar
  7. 7.
    J.P. Ma, Nucl. Phys. B 506, 329 (1997)ADSCrossRefGoogle Scholar
  8. 8.
    C.H. Chang, Y.Q. Chen, Phys. Lett. B 284, 127 (1992)ADSCrossRefGoogle Scholar
  9. 9.
    E. Braaten, K.m. Cheung, T.C. Yuan, Phys. Rev. D 48, 4230 (1993)ADSCrossRefGoogle Scholar
  10. 10.
    M. Suzuki, Phys. Rev. D 33, 676 (1986)ADSCrossRefGoogle Scholar
  11. 11.
    V.N. Gribov, L.N. Lipatov, Sov. J. Nucl. Phys. 15, 438 (1972) (Yad. Fiz. 15Google Scholar
  12. 12.
    S.M. Moosavi Nejad, H. Khanpour, S. Atashbar Tehrani, M. Mahdavi, Phys. Rev. C 94, 045201 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    M.A. Gomshi Nobary, J. Phys. G 27, 21 (2001)ADSCrossRefGoogle Scholar
  14. 14.
    M.A. Gomshi Nobary, J. Phys. G 20, 65 (1994)ADSCrossRefGoogle Scholar
  15. 15.
    M.A. Gomshi Nobary, Phys. Lett. B 559, 239 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    S.M. Moosavi Nejad, Phys. Rev. D 96, 114021 (2017)ADSCrossRefGoogle Scholar
  17. 17.
    S.M. Moosavi Nejad, M. Delpasand, Eur. Phys. J. A 53, 174 (2017)ADSCrossRefGoogle Scholar
  18. 18.
    S.M. Moosavi Nejad, Eur. Phys. J. A 52, 127 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    L. Frankfurt, W. Koepf, M. Strikman, Phys. Rev. D 57, 512 (1998)ADSCrossRefGoogle Scholar
  20. 20.
    Stanley J. Brodsky, Chueng-Ryong Ji, Prog. Part. Nucl. Phys. 13, 299 (1985)ADSCrossRefGoogle Scholar
  21. 21.
    F. Schlumpf, Phys. Rev. D 50, 6895 (1994)ADSCrossRefGoogle Scholar
  22. 22.
    X.H. Guo, T. Huang, Phys. Rev. D 43, 2931 (1991)ADSCrossRefGoogle Scholar
  23. 23.
    T. Huang, B.Q. Ma, Q.X. Shen, Phys. Rev. D 49, 1490 (1994)ADSCrossRefGoogle Scholar
  24. 24.
    S.J. Brodsky, G.R. Farrar, Phys. Rev. D 11, 1309 (1975)ADSCrossRefGoogle Scholar
  25. 25.
    D.S. Hwang, G.H. Kim, Z. Phys. C 76, 107 (1997)CrossRefGoogle Scholar
  26. 26.
    N. Isgur, M.B. Wise, Phys. Lett. B 237, 527 (1990)ADSCrossRefGoogle Scholar
  27. 27.
    Z. Dziembowski, L. Mankiewicz, Phys. Rev. Lett. 58, 2175 (1987)ADSCrossRefGoogle Scholar
  28. 28.
    CDF Collaboration (F. Abe et al.), Phys. Rev. Lett. 79, 572 (1997)CrossRefGoogle Scholar
  29. 29.
    B. Gong, J.X. Wang, Phys. Rev. Lett. 100, 232001 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    D.P. Roy, K. Sridhar, Phys. Lett. B 339, 141 (1994)ADSCrossRefGoogle Scholar
  31. 31.
    A.F. Falk, M.E. Luke, M.J. Savage, M.B. Wise, Phys. Lett. B 312, 486 (1993)ADSCrossRefGoogle Scholar
  32. 32.
    Particle Data Group (C. Patrignani et al.), Chin. Phys. C 40, 100001 (2016)ADSCrossRefGoogle Scholar
  33. 33.
    S.J. Brodsky, C.R. Ji, Phys. Rev. Lett. 55, 2257 (1985)ADSCrossRefGoogle Scholar
  34. 34.
    E. Braaten, T.C. Yuan, Phys. Rev. Lett. 71, 1673 (1993)ADSCrossRefGoogle Scholar
  35. 35.
    M. Suzuki, Phys. Lett. B 71, 139 (1977)ADSCrossRefGoogle Scholar
  36. 36.
    F. Amiri, C.R. Ji, Phys. Lett. B 195, 593 (1987)ADSCrossRefGoogle Scholar
  37. 37.
    K. Kolodziej, A. Leike, R. Ruckl, Phys. Lett. B 348, 219 (1995)ADSCrossRefGoogle Scholar
  38. 38.
    J.H. Kuhn, J. Kaplan, E.G.O. Safiani, Nucl. Phys. B 157, 125 (1979)ADSCrossRefGoogle Scholar
  39. 39.
    W. Qi, C.F. Qiao, J.X. Wang, Phys. Rev. D 75, 074012 (2007)ADSCrossRefGoogle Scholar
  40. 40.
    G.T. Bodwin, E. Braaten, G.P. Lepage, Phys. Rev. D 51, 1125 (1995) 55ADSCrossRefGoogle Scholar
  41. 41.
    M. Soleymaninia, H. Khanpour, S.M. Moosavi Nejad, arXiv:1711.11344 [hep-ph]Google Scholar
  42. 42.
    S.M. Moosavi Nejad, M. Soleymaninia, A. Maktoubian, Eur. Phys. J. A 52, 316 (2016)ADSCrossRefGoogle Scholar
  43. 43.
    M. Soleymaninia, A.N. Khorramian, S.M. Moosavi Nejad, F. Arbabifar, Acta Phys. Pol. Suppl. 7, 573 (2014)CrossRefGoogle Scholar
  44. 44.
    S.M. Moosavi Nejad, M. Soleymaninia, A.N. Khorramian, Can. J. Phys. 95, 1 (2017)ADSCrossRefGoogle Scholar
  45. 45.
    M. Soleymaninia, A.N. Khorramian, S.M. Moosavi Nejad, F. Arbabifar, Phys. Rev. D 88, 054019 (2013) 89ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of PhysicsYazd UniversityYazdIran
  2. 2.School of Particles and AcceleratorsInstitute for Research in Fundamental Sciences (IPM)TehranIran

Personalised recommendations