Advertisement

Robust control for fractional variable-order chaotic systems with non-singular kernel

  • C. J. Zuñiga-Aguilar
  • J. F. Gómez-AguilarEmail author
  • R. F. Escobar-Jiménez
  • H. M. Romero-Ugalde
Regular Article
Part of the following topical collections:
  1. Focus Point on Modelling Complex Real-World Problems with Fractal and New Trends of Fractional Differentiation

Abstract.

This paper investigates the chaos control for a class of variable-order fractional chaotic systems using robust control strategy. The variable-order fractional models of the non-autonomous biological system, the King Cobra chaotic system, the Halvorsen’s attractor and the Burke-Shaw system, have been derived using the fractional-order derivative with Mittag-Leffler in the Liouville-Caputo sense. The fractional differential equations and the control law were solved using the Adams-Bashforth-Moulton algorithm. To test the control stability efficiency, different statistical indicators were introduced. Finally, simulation results demonstrate the effectiveness of the proposed robust control.

References

  1. 1.
    D. Kumar, R.P. Agarwal, J. Singh, J. Comput. Appl. Math. (2017)  https://doi.org/10.1016/j.cam.2017.03.011
  2. 2.
    K.M. Owolabi, A. Atangana, Adv. Differ. Equ. 2017, 223 (2017)CrossRefGoogle Scholar
  3. 3.
    D. Kumar, J. Singh, D. Baleanu, Rom. Rep. Phys. 69, 103 (2017)Google Scholar
  4. 4.
    K.M. Owolabi, Commun. Nonlinear Sci. Numer. Simul. 44, 304 (2017)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    K.M. Owolabi, A. Atangana, Chaos, Solitons Fractals 99, 171 (2017)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    H. Singh, H.M. Srivastava, D. Kumar, Chaos, Solitons Fractals 103, 131 (2017)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    K.M. Owolabi, A. Atangana, Eur. Phys. J. Plus 131, 335 (2016)CrossRefGoogle Scholar
  8. 8.
    K.M. Owolabi, Chaos, Solitons Fractals 103, 544 (2017)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    K.M. Owolabi, Chaos, Solitons Fractals 93, 89 (2016)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Y. Khan, M. Fardi, K. Sayevand, M. Ghasemi, Neural Comput. Appl. 24, 187 (2014)CrossRefGoogle Scholar
  11. 11.
    Y. Khan, S.P. Ali Beik, K. Sayevand, A. Shayganmanesh, Quaest. Math. 38, 41 (2015)MathSciNetCrossRefGoogle Scholar
  12. 12.
    J. Singh, D. Kumar, R. Swroop, S. Kumar, Neur. Comput. Appl. (2017)  https://doi.org/10.1007/s00521-017-2909-8
  13. 13.
    S. Kumar, A. Kumar, Z.M. Odibat, Math. Methods Appl. Sci. 40, 4134 (2017)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    A. Atangana, A. Secer, Abstr. Appl. Anal. 2013, 279681 (2013)Google Scholar
  15. 15.
    A. Atangana, D. Baleanu, Therm. Sci. 20, 763 (2016)CrossRefGoogle Scholar
  16. 16.
    S.G. Samko, Anal. Math. 21, 213 (1995)MathSciNetCrossRefGoogle Scholar
  17. 17.
    B.S.T. Alkahtani, I. Koca, A. Atangana, J. Nonlinear Sci. Appl. 9, 4867 (2016)MathSciNetCrossRefGoogle Scholar
  18. 18.
    A. Atangana, J. Comput. Phys. 293, 104 (2015)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    H. Sun, W. Chen, C. Li, Y. Chen, Physica A 389, 2719 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    A. Atangana, J.F. Botha, Bound. Value Probl. 2013, 53 (2013)CrossRefGoogle Scholar
  21. 21.
    A. Atangana, R.T. Alqahtani, J. Comput. Theor. Nanosci. 13, 2710 (2016)CrossRefGoogle Scholar
  22. 22.
    A. Atangana, J. Comput. Phys. 293, 104 (2015)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    K. Rajagopal, S. Vaidyanathan, A. Karthikeyan, P. Duraisamy, Electr. Eng. 99, 721 (2017)CrossRefGoogle Scholar
  24. 24.
    H. Wang, Z.Z. Han, Q.Y. Xie, W. Zhang, Commun. Nonlinear Sci. Numer. Simul. 14, 1410 (2009)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    C. Yin, S.M. Zhong, W.F. Chen, Commun. Nonlinear Sci. Numer. Simul. 17, 356 (2012)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    X.Y. Wang, Y.J. He, M.J. Wang, Nonlinear Anal. 71, 6126 (2009)MathSciNetCrossRefGoogle Scholar
  27. 27.
    A. Mohammadzadeh, S. Ghaemi, Neurocomputing 191, 200 (2016)CrossRefGoogle Scholar
  28. 28.
    C. Li, K. Su, J. Zhang, D. Wei, Optik 124, 5807 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    M. Roopaei, B.R. Sahraei, T.C. Lin, Commun. Nonlinear Sci. Numer. Simul. 15, 4158 (2010)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    R. Zhang, S. Yang, Nonlinear Dyn. 69, 983 (2012)CrossRefGoogle Scholar
  31. 31.
    A. Ouannas, A.T. Azar, S. Vaidyanathan, Math. Methods Appl. Sci. 40, 1804 (2017)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    H. Delavari, Int. J. Dyn. Control 5, 102 (2017)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Z. Hammouch, T. Mekkaoui, Nonauton. Dyn. Syst. (2014)  https://doi.org/10.2478/msds-2014-0001
  34. 34.
    F. Kaiser, Radio Sci. 17, 17 (1982)ADSCrossRefGoogle Scholar
  35. 35.
    O. Olusola, E. Vincent, N. Njah, E. Ali, Int. J. Nonlinear Sci. 11, 121 (2011)MathSciNetGoogle Scholar
  36. 36.
    A. Abooee, H.A. Yaghini-Bonabi, M.R. Jahed-Motlagh, Commun. Nonlinear Sci. Numer. Simul. 18, 1235 (2013)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    P. Muthukumar, P. Balasubramaniam, K. Ratnavelu, Chaos 24, 033105 (2014)ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    A.T. Azar, S. Vaidyanathan (Editors), Advances in Chaos Theory and Intelligent Control, in Studies in Fuzziness and Soft Computing, Vol. 337 (Springer, Switzerland, 2016)Google Scholar
  39. 39.
    S. Panchev, T. Spassova, N.K. Vitanov, Chaos, Solitons Fractals 33, 1658 (2007)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • C. J. Zuñiga-Aguilar
    • 1
  • J. F. Gómez-Aguilar
    • 2
    Email author
  • R. F. Escobar-Jiménez
    • 1
  • H. M. Romero-Ugalde
    • 3
    • 4
  1. 1.Tecnológico Nacional de México/CENIDETInterior Internado Palmira S/NCuernavacaMexico
  2. 2.CONACyT-Tecnológico Nacional de México/CENIDETInterior Internado Palmira S/NCuernavacaMexico
  3. 3.Univ. Grenoble AlpesGrenobleFrance
  4. 4.CEA LETI MINATEC CampusGrenobleFrance

Personalised recommendations