Advertisement

Solitons of shallow-water models from energy-dependent spectral problems

  • Jack Haberlin
  • Tony LyonsEmail author
Regular Article
  • 32 Downloads

Abstract.

The current work investigates the soliton solutions of the Kaup-Boussinesq equation using the inverse scattering transform method. We outline the construction of the Riemann-Hilbert problem for a pair of energy-dependent spectral problems for the system, which we then use to construct the solution of this hydrodynamic system.

References

  1. 1.
    D.J. Korteweg, G. de Vries, Philos. Mag. Ser. 5 39, 422 (1895)CrossRefGoogle Scholar
  2. 2.
    C.S. Gardner, J.M. Greene, M.D. Kruskal, R.M. Miura, Phys. Rev. Lett. 19, 1095 (1967)CrossRefADSGoogle Scholar
  3. 3.
    P.D. Lax, Commun. Pure Appl. Math. 21, 467 (1968)CrossRefGoogle Scholar
  4. 4.
    M.J. Ablowitz, H. Segur, Solitons and the Inverse Scattering Transform (SIAM, Philadelphia, 1981)Google Scholar
  5. 5.
    A. Constantin, Nonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis, in CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 81 (SIAM, Philadelphia, 2011)Google Scholar
  6. 6.
    P.G. Drazin, R.S. Johnson, Solitons: An Introduction, in Cambridge Texts in Applied Mathematics, Vol. 2 (Cambridge University Press, 1989)Google Scholar
  7. 7.
    L.D. Faddeev, L.A. Takhtadzhian, Hamiltonian methods in the theory of solitons in Springer Series in Soviet Mathematics (Springer-Verlag, Berlin, 1987)Google Scholar
  8. 8.
    V.S. Gerdjikov, G. Vilasi, A.B. Yanovski, Integrable Hamiltonian Hierarchies: Spectral and Geometric Methods, in Lecture Notes in Physics, Vol. 748 (Springer-Verlag, Berlin, 2008)Google Scholar
  9. 9.
    R.S. Johnson, A modern introduction to the mathematical theory of water waves, in Cambridge Texts in Applied Mathematics, Vol. 19 (Cambridge University Press, 1997)Google Scholar
  10. 10.
    A.C. Newell, Solitons in Mathematics and Physics, in Regional Conference Series in Applied Mathematics, Vol. 48 (SIAM, Philadelphia, 1985)Google Scholar
  11. 11.
    S. Novikov, S.V. Manakov, L.P. Pitaevskii, V.E. Zakharov, Theory of Solitons: The Inverse Scattering Method, in Monographs in Contemporary Mathematics (Springer-Verlag, U.S., 1984)Google Scholar
  12. 12.
    P. Popivanov, A. Slavova, Nonlinear Waves: An Introduction, in ISAAC Series on Analysis, Applications and Computation, Vol. 4 (World Scientific, 2010)Google Scholar
  13. 13.
    R. Ivanov, T. Lyons, J. Nonlinear Math. Phys. 19, 124008 (2012)CrossRefGoogle Scholar
  14. 14.
    M. Antonowicz, A.P. Fordy, Commun. Math. Phys. 124, 465 (1989)CrossRefADSGoogle Scholar
  15. 15.
    M. Antonowicz, A.P. Fordy, Q.P. Liu, Nonlinearity 4, 669 (1991)MathSciNetCrossRefADSGoogle Scholar
  16. 16.
    A.B. Borisov, M.P. Pavlov, S.A. Zykov, Physica D 152, 104 (2001)MathSciNetCrossRefADSGoogle Scholar
  17. 17.
    A. Constantin, R.I. Ivanov, Phys. Lett. A 372, 7129 (2008)MathSciNetCrossRefADSGoogle Scholar
  18. 18.
    D.D. Holm, R.I. Ivanov, Inverse Probl. 27, 045013 (2011)CrossRefADSGoogle Scholar
  19. 19.
    R. Ivanov, Wave Motion 46, 389 (2009)MathSciNetCrossRefGoogle Scholar
  20. 20.
    D.J. Kaup, Prog. Theor. Phys. 54, 396 (1975)CrossRefADSGoogle Scholar
  21. 21.
    G.A. El, R.H.J. Grimshaw, M.V. Pavlov, Stud. Appl. Math. 106, 157 (2001)MathSciNetCrossRefGoogle Scholar
  22. 22.
    G.B. Whitham, Linear and nonlinear waves, in Pure and Applied Mathematics, Vol. 42 (John Wiley & Sons, 2011)Google Scholar
  23. 23.
    M. Pavlov, J. Nonlinear Math. Phys. 9, 173 (2002)MathSciNetCrossRefADSGoogle Scholar
  24. 24.
    G.A. El, R.H.J. Grimshaw, A.M. Kamchatnov, Stud. Appl. Math. 114, 395 (2005)MathSciNetCrossRefGoogle Scholar
  25. 25.
    A.M. Kamchatnov, R.A. Kraenkel, B.A. Umarov, Wave Motion 38, 355 (2003)MathSciNetCrossRefGoogle Scholar
  26. 26.
    V.B. Matveev, M.I. Yavor, Ann. Inst. H. Poincaré Sect. A 31, 25 (1979)MathSciNetGoogle Scholar
  27. 27.
    M. Jaulent, Ann. Inst. H. Poincaré Sect. A 17, 363 (1972)MathSciNetGoogle Scholar
  28. 28.
    M. Jaulent, C. Jean, Commun. Math. Phys. 28, 177 (1972)CrossRefADSGoogle Scholar
  29. 29.
    M. Jaulent, C. Jean, Ann. Inst. H. Poincaré Sect. A 25, 119 (1976)MathSciNetGoogle Scholar
  30. 30.
    M. Jaulent, C. Jean, Lett. Math. Phys. 5, 183 (1981)MathSciNetCrossRefADSGoogle Scholar
  31. 31.
    D.H. Sattinger, J. Szmigielski, Inverse Probl. 12, 1003 (1996)CrossRefADSGoogle Scholar
  32. 32.
    A. Laptev, R. Shterenberg, V. Sukhanov, CRM Proc. Lect. Notes 42, 341 (2007)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ScienceWaterford Institute of TechnologyWaterfordIreland
  2. 2.Department of Computing and MathematicsWaterford Institute of TechnologyWaterfordIreland

Personalised recommendations