Advertisement

Fisher information of two-electron systems

  • Aparna Saha
  • Benoy TalukdarEmail author
  • Pranab Sarkar
Regular Article
  • 77 Downloads

Abstract.

We present a theoretical model to compute numbers for position- and momentum-space Fisher information ( \( I_{\rho}\) and \( I_{\gamma}\) of correlated two-electron systems. The numbers for the first five members of the helium iso-electronic sequence indicate that i) values of \( I_{\rho}\) increase with the atomic number Z while those of \( I_{\gamma}\) decrease, and, ii) the effect of correlation reduces (increases) the bare values of \( I_{\rho}(I_{\gamma})\) . The observed behavior of Fisher information in i) and ii) is opposite to that exhibited by Shannon information entropy, presumably because in describing disorder in the probability distribution, the former is convex while the latter is concave. The information measures of Fisher and of Shannon have also been found to share some common properties, the origin of which is purely physical rather than statistical.

References

  1. 1.
    C.E. Shannon, Bell Syst. Tech. J. 27, 379 (1948)CrossRefGoogle Scholar
  2. 2.
    R.A. Fisher, Proc. Cam. Phil. Soc. 22, 7000 (1925)CrossRefGoogle Scholar
  3. 3.
    V. Vedral, Introduction to Quantum Information Science (Oxford University Press, Oxford, 2006)Google Scholar
  4. 4.
    S.P. Flego, A. Plastino, A.R. Plastino, Int. Res. J. Pure Appl. Chem. 2, 25 (2012)CrossRefGoogle Scholar
  5. 5.
    A. Amari, H. Nagaoka, Methods of Information Geometry, in Translation of Mathematical Monograph, Vol. 191 (AMS, 2000)Google Scholar
  6. 6.
    B.R. Frieden, Science from Fisher Information (Cambridge University Press, Cambridge, 2004)Google Scholar
  7. 7.
    S.B. Sears, R.G. Parr, U. Dinur, Israel J. Chem. 19, 165 (1980)CrossRefGoogle Scholar
  8. 8.
    R.A. Mosna, I.P. Hamilton, L. Delle Site, J. Phys. A: Math. Theor. 38, 3869 (2005)CrossRefADSGoogle Scholar
  9. 9.
    R.A. Mosna, I.P. Hamilton, L. Delle Site, J. Phys. A: Math. Thoer. 39, L229 (2006)CrossRefADSGoogle Scholar
  10. 10.
    I.P. Hamilton, R.A. Mosna, arXiv:0905.3539v1 [quant-ph] (2009)Google Scholar
  11. 11.
    L. Delle Site, J. Phys. A: Math. Theor. 39, 3047 (2006)MathSciNetCrossRefADSGoogle Scholar
  12. 12.
    L. Delle Site, J. Phys. A: Math. Theor. 40, 2787 (2007)MathSciNetCrossRefADSGoogle Scholar
  13. 13.
    L.M. Ghiringhelli, L. Delle Site, Phys. Rev. B 77, 073104 (2008)CrossRefADSGoogle Scholar
  14. 14.
    J.S. Dehesa, W.V. Assche, R.F. Yanez, Methods Appl. Anal. 4, 91 (1997)MathSciNetGoogle Scholar
  15. 15.
    J.S. Dehesa, S. Lopez-Rosa, B. Olmos, R.J. Yanez, J. Comput. Appl. Math. 179, 185 (2005)MathSciNetCrossRefADSGoogle Scholar
  16. 16.
    J.S. Dehesa, A. Martinez-Finkelshtein, V.N. Sorokin, Mol. Phys. 104, 613 (2006)CrossRefADSGoogle Scholar
  17. 17.
    J.S. Dehesa, R. Gonzalez-Ferez, P. Sanchez-Merino, J. Phys. A: Math. Theor. 40, 1885 (2007)CrossRefADSGoogle Scholar
  18. 18.
    E. Romera E, P. Sanchez-Merino, J.S. Dehesa, J. Math. Phys. 47, 103504 (2006)MathSciNetCrossRefADSGoogle Scholar
  19. 19.
    P. Sanchez-Merino, R. Gonzalez-Ferez, J.S. Dehesa, New J. Phys. 8, 330 (2006)CrossRefADSGoogle Scholar
  20. 20.
    E. Romera, J.S. Dehesa, J. Chem. Phys. 120, 8906 (2004)CrossRefADSGoogle Scholar
  21. 21.
    L.M. Ghiringhelli, I.P. Hamilton, L. Delle Site, J. Chem. Phys. 13, 014016 (2010)Google Scholar
  22. 22.
    K.Ch. Chatzisavvas, S.T. Tserkis, C.P. Panos, K.Ch. Moustakidis, arXiv:1312.4787v2 [quant-ph] (2013)Google Scholar
  23. 23.
    C. Le Sech, J. Phys. B 30, L47 (1997)CrossRefGoogle Scholar
  24. 24.
    Aparna Saha, Benoy Talukdar, Supriya Chatterjee, Physica A 474, 370 (2017)CrossRefADSGoogle Scholar
  25. 25.
    E. Romera, P. Sanchez-Moreno, J.S. Dehesa, Chem. Phys. Lett. 414, 468 (2005)CrossRefADSGoogle Scholar
  26. 26.
    J.S. Dehesa, S. Lopez-Rosa, B. Olmos, J. Math. Phys. 47, 052104 (2006)MathSciNetCrossRefADSGoogle Scholar
  27. 27.
    L.I. Schiff, Quantum Mechanics (Tata McGraw Hill, New Delhi, India, 2010)Google Scholar
  28. 28.
    A. Hylleraas, Z. Phys. 65, 209 (1930)CrossRefADSGoogle Scholar
  29. 29.
    D.M. Mitnik, J.E. Miraglia, J. Phys. B 38, 3325 (2005)CrossRefADSGoogle Scholar
  30. 30.
    K.V. Rodriguez, G. Gasaneo, D.M. Mitnik, J.E. Miraglia, J. Electron. Spectrosc. Relat. Phenom. 15, 204 (2007)CrossRefGoogle Scholar
  31. 31.
    K.V. Rodriguez, G. Gasaneo, D.M. Mitnik, J. Phys. B 40, 3923 (2007)CrossRefADSGoogle Scholar
  32. 32.
    S. Bhattacharyya, A. Bhattacharya, B. Talukdar, N.C. Deb Deb, J. Phys. B 29, L147 (1996)CrossRefADSGoogle Scholar
  33. 33.
    Utpal Roy, B. Talukdar, Phys. Scr. 59, 133 (1999)CrossRefADSGoogle Scholar
  34. 34.
    C.C.J. Roothaan, A.W. Weiss, Rev. Mod. Phys. 32, 194 (1960)MathSciNetCrossRefADSGoogle Scholar
  35. 35.
    G.B. Arfken, Mathematical Methods for Physicists, second ed. (Academic Press, New York, 1970)Google Scholar
  36. 36.
    R.S. Chauhan, M.K. Harbola, arXiv:1506.009122v2 (2015)Google Scholar
  37. 37.
    CH. Lin, Y.K. Ho, Chem. Phys. Lett. 633, 26 (2015)CrossRefGoogle Scholar
  38. 38.
    N.L. Guevara, R.P. Sagar, R.O. Esquivel, J. Chem. Phys. 122, 084101 (2005)CrossRefADSGoogle Scholar
  39. 39.
    I. Bialynicki-Birula I, J. Myceilski, Commun. Math. Phys. 44, 129 (1957)CrossRefADSGoogle Scholar
  40. 40.
    A. Bhattacharya, B. Talukdar, U. Roy, Angsula Ghosh, Int. J. Theor. Phys. 37, 1667 (1998)CrossRefGoogle Scholar
  41. 41.
    Aparna Saha, B. Talukdar, Supriya Chatterjee, Eur. J. Phys. 38, 0251 03 (2017)CrossRefGoogle Scholar
  42. 42.
    S. Luo, Int. J. Theor. Phys. 41, 1713 (2002)CrossRefGoogle Scholar
  43. 43.
    S.B. Liu, J. Chem. Phys. 126, 191107 (2007)CrossRefADSGoogle Scholar
  44. 44.
    A. Nagy, S.B. Liu, Phys. Lett. A 372, 1654 (2008)CrossRefADSGoogle Scholar
  45. 45.
    D. Chakraborty, P.W. Ayers, J. Math. Chem. 49, 1810 (2011)MathSciNetCrossRefGoogle Scholar
  46. 46.
    A. Nagy, E. Romera, S.B. Liu, Phys. Lett. A 277, 286 (2013)CrossRefADSGoogle Scholar
  47. 47.
    A. Nagy, E. Romera, Chem. Phys. Lett. 597, 139 (2014)CrossRefADSGoogle Scholar
  48. 48.
    Z. Huang, S. Kais, Chem. Phys. Lett. 412, 1 (2005)CrossRefADSGoogle Scholar
  49. 49.
    Z. Huang, H. Wang, S. Kais, J. Mod. Opt. 53, 10 (2006)CrossRefGoogle Scholar
  50. 50.
    R.J. Yanez, A.R. Plastino, J.S. Dehesa, Eur. Phys. J. D 56, 141 (2010)CrossRefADSGoogle Scholar
  51. 51.
    D. Manzano, A.R. Plastino, J.S. Dehesa, T. Koga, J. Phys. A 43, 255301 (2010)MathSciNetCrossRefADSGoogle Scholar
  52. 52.
    P.A. Bouvrie, A.P. Majtey, A.R. Plastno, P. Sanchez-Mareno, J.S. Dehesa, Eur. Phys. J. D 66, 15 (2012)CrossRefADSGoogle Scholar
  53. 53.
    A.P. Majtey, A.R. Plastino, J.S. Dehesa, J. Phys. A 45, 115309 (2012)MathSciNetCrossRefADSGoogle Scholar
  54. 54.
    J.S. Dehesa, T. Koga, Plastino, R.O. Esquivel, Phys. B 45, 015504 (2012)CrossRefGoogle Scholar
  55. 55.
    P. Koscik, A. Okopinska, Few-Body Syst. 55, 1151 (2014)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsVisva-Bharati UniversitySantiniketanIndia
  2. 2.Department of ChemistryVisva-Bharati UniversitySantiniketanIndia

Personalised recommendations