Advertisement

Fast and high-order numerical algorithms for the solution of multidimensional nonlinear fractional Ginzburg-Landau equation

  • Akbar MohebbiEmail author
Regular Article

Abstract.

In this paper we propose two fast and accurate numerical methods for the solution of multidimensional space fractional Ginzburg-Landau equation (FGLE). In the presented methods, to avoid solving a nonlinear system of algebraic equations and to increase the accuracy and efficiency of method, we split the complex problem into simpler sub-problems using the split-step idea. For a homogeneous FGLE, we propose a method which has fourth-order of accuracy in time component and spectral accuracy in space variable and for nonhomogeneous one, we introduce another scheme based on the Crank-Nicolson approach which has second-order of accuracy in time variable. Due to using the Fourier spectral method for fractional Laplacian operator, the resulting schemes are fully diagonal and easy to code. Numerical results are reported in terms of accuracy, computational order and CPU time to demonstrate the accuracy and efficiency of the proposed methods and to compare the results with the analytical solutions. The results show that the present methods are accurate and require low CPU time. It is illustrated that the numerical results are in good agreement with the theoretical ones.

References

  1. 1.
    N. Akhmediev, A. Ankiewicz, Dissipative Solitons: From Optics to Biology and Medicine (Springer, Berlin, 2008)Google Scholar
  2. 2.
    I.S. Aranson, L. Kramer, Rev. Mod. Phys. 74, 99 (2002)ADSCrossRefGoogle Scholar
  3. 3.
    V.L. Ginzburg, L.D. Landau, J. Exp. Theor. Phys. 20, 1064 (1950)Google Scholar
  4. 4.
    A. Shokri, F. Afshari, Comput. Phys. Commun. 197, 43 (2015)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    A. Shokri, M. Dehghan, Comput. Model. Eng. Sci. 84, 333 (2012)Google Scholar
  6. 6.
    A.M. Wazwaz, Appl. Math. Lett. 19, 1007 (2006)MathSciNetCrossRefGoogle Scholar
  7. 7.
    A.M. Wazwaz, Partial Differential Equations and Solitary Waves Theory (Springer, New York, 2009)Google Scholar
  8. 8.
    M. Dehghan, M. Abbaszadeh, to be published in Alex. Eng. JGoogle Scholar
  9. 9.
    H. Khosravian-Arab, M. Dehghan, M.R. Eslahchi, J. Comput. Phys. 338, 527 (2017)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    H. Khosravian-Arab, M. Dehghan, M.R. Eslahchi, J. Comput. Phys. 299, 526 (2015)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    V. Tarasov, G. Zaslavsky, Phys. A 354, 249 (2005)CrossRefGoogle Scholar
  12. 12.
    V. Tarasov, G. Zaslavsky, Chaos 16, 023110 (2006)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    P. Wang, C. Huang, J. Comput. Phys. 312, 31 (2016)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    A. Milovanov, J. Rasmussen, Phys. Lett. A 337, 75 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    A. Mvogo, A. Tambue, G. Ben-Bolie, T. Kofane, arXiv:1411.7983 (2014)Google Scholar
  16. 16.
    H. Lu, S. Lu, Z. Feng, Int. J. Bifurc. Chaos 23, 1350202 (2013)CrossRefGoogle Scholar
  17. 17.
    X. Pu, B. Guo, Appl. Anal. 92, 318 (2013)MathSciNetCrossRefGoogle Scholar
  18. 18.
    V. Tarasov, J. Phys. A 39, 8395 (2006)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    B. Guo, Z. Huo, Fract. Calc. Appl. Anal. 16, 226 (2013)MathSciNetGoogle Scholar
  20. 20.
    V. Millot, Y. Sire, Arch, Ration. Mech. Anal. 215, 125 (2015)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Z.P. Hao, Z.Z. Sun, Numer. Methods Partial Differ. Equ. 33, 105 (2017)CrossRefGoogle Scholar
  22. 22.
    M. Li, C. Huanga, N. Wang, Appl. Numer. Math. 118, 131 (2017)MathSciNetCrossRefGoogle Scholar
  23. 23.
    N. Wang, C. Huang, Technical Report (May 2017)  https://doi.org/10.13140/RG.2.2.13832.01288
  24. 24.
    W. Chen, G.F. Pang, J. Comput. Phys. 309, 350 (2016)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    A. Bueno-Orovio, D. Kay, K. Burrage, BIT Numer. Math. 54, 937 (2014)CrossRefGoogle Scholar
  26. 26.
    S.Y. Zhai, Z.F. Weng, X.L. Feng, Int. J. Heat. Mass Transfer 87, 111 (2015)CrossRefGoogle Scholar
  27. 27.
    G.M. Muslu, H.A. Erbay, Math. Comput. Simul. 67, 581 (2005)CrossRefGoogle Scholar
  28. 28.
    H. Yoshida, Phys. Lett. A 150, 262 (1990)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    M. Suzuki, Phys. Lett. A 165, 387 (1992)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    G. Strang, SIAM J. Numer. Anal. 5, 506 (1968)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    M. Dehghan, A. Taleei, Comput. Phys. Commun. 181, 43 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Applied Mathematics, Faculty of Mathematical ScienceUniversity of KashanKashanIran

Personalised recommendations