Support vector regression methodology for estimating global solar radiation in Algeria

  • Mawloud Guermoui
  • Abdelaziz RabehiEmail author
  • Kacem Gairaa
  • Said Benkaciali
Regular Article


Accurate estimation of Daily Global Solar Radiation (DGSR) has been a major goal for solar energy applications. In this paper we show the possibility of developing a simple model based on the Support Vector Regression (SVM-R), which could be used to estimate DGSR on the horizontal surface in Algeria based only on sunshine ratio as input. The SVM model has been developed and tested using a data set recorded over three years (2005-2007). The data was collected at the Applied Research Unit for Renewable Energies (URAER) in Ghardaïa city. The data collected between 2005-2006 are used to train the model while the 2007 data are used to test the performance of the selected model. The measured and the estimated values of DGSR were compared during the testing phase statistically using the Root Mean Square Error (RMSE), Relative Square Error (rRMSE), and correlation coefficient (\(r^{2}\)), which amount to 1.59(MJ/m2), 8.46 and 97,4%, respectively. The obtained results show that the SVM-R is highly qualified for DGSR estimation using only sunshine ratio.


  1. 1.
    F. Besharat, A.A. Dehghan, A.R. Faghih, Renew. Sustain. Energy Rev. 21, 798 (2013)CrossRefGoogle Scholar
  2. 2.
    C.A. Gueymard, Sol. Energy 86, 2145 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    R.T. Pinker, R. Frouin, Z. Li, Remote Sens. Environ. 51, 108 (1995)ADSCrossRefGoogle Scholar
  4. 4.
    R.T. Pinker, W.P. Kustas, I. Laszlo, M.S. Moran, A.R. Huete, Water Resour. Res. 30, 1375 (1994)ADSCrossRefGoogle Scholar
  5. 5.
    M. Benghanem, A. Mellit, Energy 35, 3751 (2010)CrossRefGoogle Scholar
  6. 6.
    A.K. Yadav, S.S. Chandel, Renew. Sustain. Energy Rev. 33, 772 (2014)CrossRefGoogle Scholar
  7. 7.
    J.A. Prescott, Trans. R. Soc. South Aust. 64, 114 (1940)Google Scholar
  8. 8.
    J.L. Chen, G.S. Li, S.J. Wu, Energy Convers. Manag. 75, 311 (2013)CrossRefGoogle Scholar
  9. 9.
    J.K. Page, The estimation of monthly mean values of daily total short wave radiation on vertical and inclined surfaces from sunshine records 40S-40N, in Proceedings of the United Nations Conference on New Sources of Energy: Solar Energy, Wind Power and Geothermal Energy, Rome, Italy (1967) pp. 21--31Google Scholar
  10. 10.
    R.B. Benson, M.V. Paris, J.E. Sherry, C.G. Justus, Sol. Energy 32, 523 (1984)ADSCrossRefGoogle Scholar
  11. 11.
    S.M. Al-Alawi, H.A. Al-Hinai, Renew. Energy 14, 199 (1998)CrossRefGoogle Scholar
  12. 12.
    O. Senkal, T. Kuleli, Appl. Energy 86, 1222 (2009)CrossRefGoogle Scholar
  13. 13.
    B.B. Ekici, Measurement 50, 255 (2014)CrossRefGoogle Scholar
  14. 14.
    M. Guermoui, A. Rabehi, S. Benkaciali, D. Djafer, Leonardo Electron. J. Pract. Technol. 28, 35 (2016)Google Scholar
  15. 15.
    A. Rabehi, M. Guermoui, D. Djafer, M. Zaiani, Leonardo Electron. J. Pract. Technol. 27, 177 (2015)Google Scholar
  16. 16.
    S. Benkaciali, M. Haddadi, A. Khellaf, K. Gairaa, M. Guermoui, Rev. Energies Renouv. 19, 617 (2016)Google Scholar
  17. 17.
    G.P. Petropoulos, C. Kalaitzidis, K.P. Vadrevu, Comput. Geosci. 41, 99 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    J. John, K.V. Pramod, K. Balakrishnan, Proc. Eng. 30, 598 (2012)CrossRefGoogle Scholar
  19. 19.
    M. Guermoui, M.L. Mekhalfi, K. Ferroudji, Heart sounds analysis using wavelets responses and support vector machines, in 2013 8th International Workshop on Systems, Signal Processing and their Applications (WoSSPA) (IEEE, 2013) pp. 233--238Google Scholar
  20. 20.
    V. Vapnik, S.E. Golowich, A.J. Smola, Support vector method for function approximation, regression estimation and signal processing, in Advances in Neural Information Processing Systems (1997) pp. 281--287Google Scholar
  21. 21.
    F.E. Tay, L. Cao, Omega 29, 309 (2001)CrossRefGoogle Scholar
  22. 22.
    M. Bou-Rabee, S.A. Sulaiman, M.S. Saleh, S. Marafi, Renew. Sustain. Energy Rev. 72, 434 (2017)CrossRefGoogle Scholar
  23. 23.
    C. Chang, C. Lin, LIBSVM: a library for support vector machines (2001)
  24. 24.
    K. Gairaa, A. Khellaf, Y. Messlem, F. Chellali, Renew. Sustain. Energy Rev. 57, 238 (2016)CrossRefGoogle Scholar
  25. 25.
    J.A. Duffie, W.A. Beckman, Solar engineering of thermal processes (Madison, Wisconsin, 1980)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Mawloud Guermoui
    • 1
  • Abdelaziz Rabehi
    • 1
    Email author
  • Kacem Gairaa
    • 1
  • Said Benkaciali
    • 1
  1. 1.Unité de Recherche Appliquée en Energies Renouvelables, URAERCentre de Développement des Energies Renouvelables, CDERGhardaïaAlgeria

Personalised recommendations