Advertisement

Cattaneo-Christov heat flux effect on hydromagnetic radiative Oldroyd-B liquid flow across a cone/wedge in the presence of cross-diffusion

  • M. Gnaneswara ReddyEmail author
Regular Article

Abstract.

The present article scrutinizes the prominent characteristics of the Cattaneo-Christov heat flux on magnetohydrodynamic Oldroyd-B radiative liquid flow over two different geometries. The effects of cross-diffusion are considered in the modeling of species and energy equations. Similarity transformations are employed to transmute the governing flow, species and energy equations into a set of nonlinear ordinary differential equations (ODEs) with the appropriate boundary conditions. The final system of dimensionless equations is resolved numerically by utilizing the R-K-Fehlberg numerical approach. The behaviors of all physical pertinent flow controlling variables on the three flow distributions are analyzed through plots. The obtained numerical results have been compared with earlier published work and reveal good agreement. The Deborah numbers \( \gamma_{1}\) and \( \gamma_{2}\) have quite opposite effects on velocity and energy fields. The increase in thermal relaxation parameter \( \beta\) corresponds to a decrease in the fluid temperature. This study has salient applications in heat and mass transfer manufacturing system processing for energy conversion.

References

  1. 1.
    J.B.J. Fourier, Théorie analytique de la chaleur (Paris, 1822)Google Scholar
  2. 2.
    C. Cattaneo, Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia 3, 83 (1948)Google Scholar
  3. 3.
    C.I. Christov, Mech. Res. Commun. 36, 481 (2009)CrossRefGoogle Scholar
  4. 4.
    V. Tibullo, V. Zampoli, Mech. Res. Commun. 38, 77 (2011)CrossRefGoogle Scholar
  5. 5.
    J.A. Khan, M. Mustafa, T. Hayat, A. Alsaedi, PLoS ONE 10, e0137363 (2015)CrossRefGoogle Scholar
  6. 6.
    S.A. Shehzad, F.M. Abbasi, T. Hayat, B. Ahmad, Appl. Math. Mech. 37, 761 (2016)CrossRefGoogle Scholar
  7. 7.
    S. Han, L. Zheng, C. Li, X. Zhang, Appl. Math. Lett. 38, 87 (2014)MathSciNetCrossRefGoogle Scholar
  8. 8.
    M. Gnaneswara Reddy, G. Rama Subba Reddy, Front. Heat Mass Transf. (2017)  https://doi.org/10.5098/hmt.8.20
  9. 9.
    A.J. Chamkha, M. Mujtaba, A. Quadri, C. Issa, Heat Mass Transfer 39, 305 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    O.D. Makinde, A. Ogulu, Chem. Eng. Commun. 195, 1575 (2008)CrossRefGoogle Scholar
  11. 11.
    D. Pal, H. Mondal, Meccanica 44, 133 (2009)MathSciNetCrossRefGoogle Scholar
  12. 12.
    T. Hayat, Z. Abbas, I. Pop, S. Asghar, Int. J. Heat Mass Transfer 53, 466 (2010)CrossRefGoogle Scholar
  13. 13.
    T. Hayat, M. Qasim, Z. Abbas, Z. Naturforsch. A 65, 231 (2010)ADSGoogle Scholar
  14. 14.
    T. Hayat, M. Qasim, Int. J. Heat Mass Transfer 53, 4780 (2010)CrossRefGoogle Scholar
  15. 15.
    T. Hayat, R. Sajjad, Z. Abbas, M. Sajid, A.A. Hendi, Int. J. Heat Mass Transfer 54, 854 (2011)CrossRefGoogle Scholar
  16. 16.
    M. Gnaneswara Reddy, Ain Shams Eng. J. 5, 169 (2014)CrossRefGoogle Scholar
  17. 17.
    T. Hayat, A. Shafiq, A. Alsaedi, PLoS ONE 9, e83153 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    M. Gnaneswara Reddy, Eur. Phys. J. Plus 129, 41 (2014)CrossRefGoogle Scholar
  19. 19.
    M.S. Alam, M.M. Rahman, M.A. Samad, Nonlinear Anal. 11, 217 (2006)Google Scholar
  20. 20.
    M.K. Partha, P.V.S.N. Murthy, G.P. Raja Sekhar, J. Heat Transf. 128, 605 (2006)CrossRefGoogle Scholar
  21. 21.
    A. Postelnicu, Heat Mass Transf. 43, 595 (2006)ADSCrossRefGoogle Scholar
  22. 22.
    A. Mahdy, Int. Commun. Heat Mass Transf. 36, 1067 (2009)CrossRefGoogle Scholar
  23. 23.
    C.Y. Cheng, Int. Commun. Heat Mass Transf. 36, 1020 (2009)CrossRefGoogle Scholar
  24. 24.
    A. Mahdy, J. Non-Newtonian Fluid Mech. 165, 568 (2010)CrossRefGoogle Scholar
  25. 25.
    T. Hayat, M. Mustafa, I. Pop, Commun. Nonlinear Sci. Numer. Simul. 15, 1183 (2010)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    M. Gnaneswara Reddy, N. Bhaskar Reddy, Int. J. Appl. Math Mech. 6, 1 (2010)Google Scholar
  27. 27.
    O.D. Makinde, Lat. Am. Appl. Res. 41, 63 (2011)Google Scholar
  28. 28.
    P.S. Reddy, V.P. Rao, J. Appl. Fluid Mech. 5, 139 (2012)Google Scholar
  29. 29.
    A.J. Chamkha, A.M. Rashad, Can. J. Chem. Eng. (2014)  https://doi.org/10.1002/cjce.21894
  30. 30.
    M. Gnaneswara Reddy, Alex. Eng. J. 55, 1225 (2016)CrossRefGoogle Scholar
  31. 31.
    M. Gnaneswara Reddy, O.D. Makinde, J. Mol. Liq. 223, 1242 (2016)CrossRefGoogle Scholar
  32. 32.
    M. Gnaneswara Reddy, N. Sandeep, Ain Shams Eng. J. (2016)  https://doi.org/10.1016/j.asej.2016.06.012
  33. 33.
    M. Bilal Ashraf, T. Hayat, A. Alsaedi, S.A. Shehzad, Results Phys. 6, 917 (2016)ADSCrossRefGoogle Scholar
  34. 34.
    T. Hayat, S. Farooq, A. Alsaedi, B. Ahmad, Int. J. Therm. Sci. 112, 68 (2017)CrossRefGoogle Scholar
  35. 35.
    M. Gnaneswara Reddy, N. Sandeep, J. Comput. Appl. Res. Mech. Eng. 7, 1 (2017)Google Scholar
  36. 36.
    T. Hayat, Y. Wang, K. Hutter, S. Asghar, A.M. Siddiqui, Math. Prob. Eng. 4, 347 (2004)CrossRefGoogle Scholar
  37. 37.
    O.D. Makinde, M. Gnaneswara Reddy, K. Venugopal Reddy, J. Appl. Fluid Mech. 10, 1105 (2017)CrossRefGoogle Scholar
  38. 38.
    L. Zheng, Y. Liu, X. Zhang, Math. Comput. Model. 54, 780 (2011)CrossRefGoogle Scholar
  39. 39.
    T. Hayat, Masood Khan, M. Ayub, Appl. Math. Comput. 151, 105 (2004)MathSciNetGoogle Scholar
  40. 40.
    T. Hayat, S.A. Shehzad, M. Mustafa, A.A. Hendi, Int. J. Chem. Reactor Eng. (2012)  https://doi.org/10.1515/1542-6580.2655
  41. 41.
    S. Abbasbandy, T. Hayat, A. Alsaedi, M.M. Rashidi, Int. J. Numer. Methods Heat Fluid Flow 24, 390 (2014)CrossRefGoogle Scholar
  42. 42.
    S.S. Motsa, Z.G. Makukula, S. Shateyi, PLoS ONE 10, e0133507 (2015)CrossRefGoogle Scholar
  43. 43.
    T. Hayat, T. Muhammad, S.A. Shehzad, M.S. Alhuthali, J. Lu, J. Mol. Liq. 212, 272 (2015)CrossRefGoogle Scholar
  44. 44.
    T. Hayat, M. Imtiaz, A. Alsaedi, Appl. Math. Mech. 37, 573 (2016)CrossRefGoogle Scholar
  45. 45.
    T. Hayat, S. Qayyum, A. Alsaedi, M. Waqa, J. Mol. Liq. 224, 811 (2016)CrossRefGoogle Scholar
  46. 46.
    S.A. Shehzad, F.M. Abbasi, T. Hayat, A. Alsaed, J. Mol. Liq. 224, 274 (2016)CrossRefGoogle Scholar
  47. 47.
    N. Ali, K. Javid, M. Sajid, A. Zaman, T. Hayat, Int. J. Heat Mass Transfer 94, 500 (2016)CrossRefGoogle Scholar
  48. 48.
    T. Hayat, T. Ayub, T. Muhammad, A. Alsaedi, J. Mol Liq. 234, 9 (2017)CrossRefGoogle Scholar
  49. 49.
    T. Hayat, Naveed Ahmed, M. Sajid, S. Asghar, Comput. Math. Appl. 54, 407 (2007)MathSciNetCrossRefGoogle Scholar
  50. 50.
    S.A. Shehzad, A. Alsaedi, T. Hayat, M.S. Alhuthali, J. Taiwan Inst. Chem. Eng. 45, 787 (2014)CrossRefGoogle Scholar
  51. 51.
    T. Hayat, M. Imtiaz, A. Alsaedi, S. Almezal, J. Magn. & Magn. Mater. 401, 296 (2016)ADSCrossRefGoogle Scholar
  52. 52.
    N. Sandeep, M. Gnaneswara Reddy, Eur. Phys. J. Plus 132, 147 (2017)CrossRefGoogle Scholar
  53. 53.
    M.Q. Brewster, Thermal Radiative Transfer and Properties (John Wiley & Sons, 1992)Google Scholar
  54. 54.
    J.V. Ramana Reddy, V. Sugunamma, N. Sandeep, J. Mol. Liq. 223, 1234 (2016)CrossRefGoogle Scholar
  55. 55.
    T. Hayat, M. Imtiaz, A. Alsaedi, Appl. Math. Mech. 37, 573 (2016)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsAcharya Nagarjuna University CampusOngoleIndia

Personalised recommendations