Advertisement

Nonlocal modified Einstein’s field equation and geometric origin of a small cosmological constant

Regular Article
  • 33 Downloads

Abstract.

We show that the description of the spacetime in terms of backward-forward extension of its corresponding metric leads to the geometric origin of a small cosmological constant. The nonlocal cosmological constant appears in the Einstein’s field equation and its mathematical expression depends on the nonlocal metric, Ricci scalar and the infinitesimal nonlocal parameter introduced in the theory. The modified theory has interesting consequences in FRW cosmology, mainly a nonsingular universe, the occurrence of a late-time accelerated expansion of the universe and an early universe dominated by a negative energy density and a positive pressure. Our model can explain the acceleration of the universe without a fine-tuned cosmological constant \(\Lambda\).

References

  1. 1.
    B. Mashhoon, Phys. Rev. A 47, 4498 (1993)ADSCrossRefGoogle Scholar
  2. 2.
    N. Bohr, L. Rosenfeld, K. Dan, Vidensk. Selsk. Mat. Fys. Medd. 12, 8 (1933) (translated in Quantum Theory and MeasurementGoogle Scholar
  3. 3.
    C. Cremaschini, M. Tessarotto, Eur. Phys. J. Plus 126, 42 (2011)CrossRefGoogle Scholar
  4. 4.
    C. Cremaschini, M. Tessarotto, Eur. Phys. J. Plus 126, 63 (2011)CrossRefGoogle Scholar
  5. 5.
    M. Tessarotto, C. Cremaschini, Adv. Math. Phys. 2016, 9619326 (2016)CrossRefGoogle Scholar
  6. 6.
    F.W. Hehl, B. Mashhoon, Phys. Rev. D 79, 064028 (2009)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    C. Chicone, B. Mashhoon, Class. Quantum Grav. 33, 075005 (2016)ADSCrossRefGoogle Scholar
  8. 8.
    F.W. Hehl, B. Mashhoon, Phys. Lett. B 673, 279 (2009)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    N.C. Tsamis, R.P. Woodard, J. Cosmol. Astropart. Phys. 09, 008 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    F. Briscese, A. Marcianò, L. Modesto, E.N. Saridakis, Phys. Rev. D 87, 083507 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    A.O. Barvinsky, Phys. Rev. D 85, 104018 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    I. Dimitrijevic, B. Dragovich, J. Stankovic, A.S. Koshelev, Z. Rakic, Springer Proc. Math. Stat. 191, 35 (2016)CrossRefGoogle Scholar
  13. 13.
    M. Blagojevic, F.W. Hehl (Editors), Gauge Theories of Gravitation (Imperial College Press, London, UK, 2013)Google Scholar
  14. 14.
    R. Aldrovandi, J.G. Pereira, Teleparallel Gravity: An Introduction (Springer, New York, NY, USA, 2013)Google Scholar
  15. 15.
    F.W. Hehl, B. Mashhoon, Phys. Rev. D 79, 064028 (2009)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    L. Nottale, Fractal Space-Time and Microphysics: Towards a Theory of Scale Relativity (World Scientific, 1993)Google Scholar
  17. 17.
    R.A. El-Nabulsi, Qual. Theory Dyn. Syst. 13, 149 (2014)MathSciNetCrossRefGoogle Scholar
  18. 18.
    R.A. El-Nabulsi, Qual. Theory Dyn. Syst. 16, 223 (2017)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Z.-Y. Li, J.-L. Fu, L.-Q. Chen, Phys. Lett. A 374, 106 (2009)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    R.A. El-Nabulsi, Anal. Univ. Vest Tim. LIV1, 139 (2016)Google Scholar
  21. 21.
    R.A. El-Nabulsi, D.F.M. Torres, J. Math. Phys. 49, 053521 (2008)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    J. Cresson, J. Math. Phys. 48, 033504 (2007)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    J.A.K. Suykens, Phys. Lett. A 373, 1201 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    J. Shao, N. Makri, J. Phys. Chem. 103, 9479 (1999)CrossRefGoogle Scholar
  25. 25.
    C.-Y. Hsieh, R. Kapral, J. Chem. Phys. 137, 22A507 (2012)CrossRefGoogle Scholar
  26. 26.
    G. Cusin, S. Foffa, M. Maggiore, M. Mancarella, Phys. Rev. D 93, 043006 (2016)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    R. Utiyama, B.S. DeWitt, J. Math. Phys. 3, 608 (1962)ADSCrossRefGoogle Scholar
  28. 28.
    E. Pechlaner, R. Sexl, Commun. Math. Phys. 2, 165 (1966)ADSCrossRefGoogle Scholar
  29. 29.
    K.S. Stelle, Gen. Relativ. Gravit. 9, 353 (1978)ADSCrossRefGoogle Scholar
  30. 30.
    M. Farhoudi, Gen. Relativ. Gravit. 38, 1261 (2006)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation (Freeman, San Francisco, 1973)Google Scholar
  32. 32.
    S.M. Carroll, Spacetime and Geometry (Addison-Wesley, 2004)Google Scholar
  33. 33.
    S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (J. Wiley & Sons, 1972)Google Scholar
  34. 34.
    M. Szydlowski, A. Stachowski, J. Cosmol. Astropart. Phys. 10, 066 (2015)ADSCrossRefGoogle Scholar
  35. 35.
    S.M. Carroll, Why is the universe accelerating?, in Measuring and Modeling the Universe, edited by W.L. Freedman (Cambridge University Press, Cambridge, 2003)Google Scholar
  36. 36.
    S. Rani, A. Altaibayeva, M. Shahalam, J.K. Singh, R. Myrzakulov, J. Cosmol. Astropart. Phys. 03, 031 (2015)ADSCrossRefGoogle Scholar
  37. 37.
    A. Dolgov, V. Halenka, I. Tkachev, J. Cosmol. Astropart. Phys. 10, 047 (2014)ADSCrossRefGoogle Scholar
  38. 38.
    V. Sahni, T.D. Saini, A. Starobinsky, U. Alam, JETP Lett. 77, 201 (2003)ADSCrossRefGoogle Scholar
  39. 39.
    U. Debnath, Class. Quantum Grav. 25, 205019 (2008)ADSCrossRefGoogle Scholar
  40. 40.
    R.J. Nemiroff, R. Joshi, B.R. Patla, J. Cosmol. Astropart. Phys. 06, 006 (2015)ADSCrossRefGoogle Scholar
  41. 41.
    A. Linde, Particle Physics and Inflationary Cosmology (Harwood Academic Publishers, 1990)Google Scholar
  42. 42.
    S. Ray, M. Khlopov, U. Mukhopadhyay, P.P. Ghosh, Int. J. Theor. Phys. 50, 939 (2011)CrossRefGoogle Scholar
  43. 43.
    I.A. Aref’eva, S. Yu. Vernov, A.S. Koshelev, Theor. Math. Phys. 148, 895 (2006)CrossRefGoogle Scholar
  44. 44.
    I. Dimitrijevic, B. Dragovich, J. Grujic, Z. Rakic, Publ. Inst. Math. 94, 187 (2013)CrossRefGoogle Scholar
  45. 45.
    J. Grujic, Krag. J. Math. 39, 73 (2015)CrossRefGoogle Scholar
  46. 46.
    H. Arzi, A. Bounames, Gen. Relativ. Gravit. 44, 2547 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Athens Institute for Education and Research, Mathematics and Physics DivisionsAthensGreece

Personalised recommendations