Advertisement

A DPL model of photo-thermal interaction in an infinite semiconductor material containing a spherical hole

  • Aatef D. Hobiny
  • Ibrahim A. AbbasEmail author
Regular Article

Abstract.

The dual phase lag (DPL) heat transfer model is applied to study the photo-thermal interaction in an infinite semiconductor medium containing a spherical hole. The inner surface of the cavity was traction free and loaded thermally by pulse heat flux. By using the eigenvalue approach methodology and Laplace’s transform, the physical variable solutions are obtained analytically. The numerical computations for the silicon-like semiconductor material are obtained. The comparison among the theories, i.e., dual phase lag (DPL), Lord and Shulman’s (LS) and the classically coupled thermoelastic (CT) theory is presented graphically. The results further show that the analytical scheme can overcome mathematical problems by analyzing these problems.

References

  1. 1.
    A. Mandelis, Photoacoustic and Thermal Wave Phenomena in Semiconductors (Elsevier Science Pub. Co., Inc., New York, 1987)Google Scholar
  2. 2.
    D.P. Almond, P. Patel, Photothermal Science and Techniques (Springer Science & Business Media, 1996)Google Scholar
  3. 3.
    A. Mandelis, P. Hess, Semiconductors and Electronic Materials (Spie Press, 2000)Google Scholar
  4. 4.
    H.W. Lord, Y. Shulman, J. Mech. Phys. Solids 15, 299 (1967)ADSCrossRefGoogle Scholar
  5. 5.
    A.E. Green, K.A. Lindsay, J. Elast. 2, 1 (1972)CrossRefGoogle Scholar
  6. 6.
    R.S. Dhaliwal, H.H. Sherief, Quart. Appl. Math. 38, 1 (1980)MathSciNetCrossRefGoogle Scholar
  7. 7.
    D.Y. Tzou, J. Heat Transf. 117, 8 (1995)CrossRefGoogle Scholar
  8. 8.
    D.Y. Tzou, J. Thermophys. Heat Transf. 9, 686 (1995)CrossRefGoogle Scholar
  9. 9.
    I.A. Abbas, A.M. Zenkour, J. Comput. Theor. Nanosci. 11, 642 (2014)CrossRefGoogle Scholar
  10. 10.
    A.E. Abouelregal, S. Abo-Dahab, J. Therm. Stresses 35, 820 (2012)CrossRefGoogle Scholar
  11. 11.
    Y. Song et al., Int. J. Solids Struct. 47, 1871 (2010)CrossRefGoogle Scholar
  12. 12.
    Y. Song et al., Int. J. Thermophys. 35, 305 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    Y. Song, J. Bai, Z. Ren, Int. J. Thermophys. 33, 1270 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    Y. Song, J. Bai, Z. Ren, Acta Mech. 223, 1545 (2012)MathSciNetCrossRefGoogle Scholar
  15. 15.
    F.A. McDonald, G.C. Wetsel jr., J. Appl. Phys. 49, 2313 (1978)ADSCrossRefGoogle Scholar
  16. 16.
    W. Jackson, N.M. Amer, J. Appl. Phys. 51, 3343 (1980)ADSCrossRefGoogle Scholar
  17. 17.
    R. Stearns, G. Kino, Appl. Phys. Lett. 47, 1048 (1985)ADSCrossRefGoogle Scholar
  18. 18.
    J. Opsal, A. Rosencwaig, Appl. Phys. Lett. 47, 498 (1985)ADSCrossRefGoogle Scholar
  19. 19.
    A. Rosencwaig, J. Opsal, D.L. Willenborg, Appl. Phys. Lett. 43, 166 (1983)ADSCrossRefGoogle Scholar
  20. 20.
    I.A. Abbas, Int. J. Comput. Mater. Sci. Eng. 5, 1650016 (2016)Google Scholar
  21. 21.
    A.D. Hobiny, I.A. Abbas, Mech. Time-Dependent Mater. 21, 61 (2017)ADSCrossRefGoogle Scholar
  22. 22.
    I.A. Abbas, R. Kumar, Steel Compos. Struct. 20, 1103 (2016)CrossRefGoogle Scholar
  23. 23.
    A.M. Zenkour, A.E. Abouelregal, Steel Compos. Struct. 18, 909 (2015)CrossRefGoogle Scholar
  24. 24.
    A. Heidarpour, M.A. Bradford, K.A.M. Othman, J. Construct. Steel Res. 67, 1806 (2011)CrossRefGoogle Scholar
  25. 25.
    N.S. Hamzehkolaei, P. Malekzadeh, J. Vaseghi, Steel Compos. Struct. 11, 341 (2011)CrossRefGoogle Scholar
  26. 26.
    S.M. Said, M.I. Othman, Struct. Eng. Mech. 57, 201 (2016)CrossRefGoogle Scholar
  27. 27.
    S.A. Hosseini, M.H. Abolbashari, S.M. Hosseini, Struct. Eng. Mech. 60, 529 (2016)CrossRefGoogle Scholar
  28. 28.
    I.A. Abbas, F.S. Alzahrani, Steel Compos. Struct. 21, 791 (2016)CrossRefGoogle Scholar
  29. 29.
    M. Saadatfar, M. Aghaie-Khafri, Smart Struct. Syst. 15, 1411 (2015)CrossRefGoogle Scholar
  30. 30.
    R. Kakar, S. Kakar, Earthq. Struct. 9, 577 (2015)CrossRefGoogle Scholar
  31. 31.
    D. Todorović, J. Phys. IV (Proc.) 125, 551 (2005)Google Scholar
  32. 32.
    D. Todorović, Rev. Sci. Instrum. 74, 582 (2003)ADSCrossRefGoogle Scholar
  33. 33.
    A. Mandelis, M. Nestoros, C. Christofides, Opt. Eng. 36, 459 (1997)ADSCrossRefGoogle Scholar
  34. 34.
    A.M. Zenkour, A.E. Abouelregal, J. Therm. Sci. Technol. 10, JTST0019 (2015)CrossRefGoogle Scholar
  35. 35.
    N.C. Das, A. Lahiri, R.R. Giri, Indian J. Pure Appl. Math. 28, 1573 (1997)MathSciNetGoogle Scholar
  36. 36.
    I.A. Abbas, Mech. Based Design Struct. Mach. 43, 501 (2015)CrossRefGoogle Scholar
  37. 37.
    H. Stehfest, Commun. ACM 13, 47 (1970)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Nonlinear Analysis and Applied Mathematics Research Group (NAAM), Department of MathematicsKing Abdulaziz UniversityJeddahSaudi Arabia
  2. 2.Department of Mathematics, Faculty of ScienceSohag UniversitySohagEgypt

Personalised recommendations