Skip to main content
Log in

A DPL model of photo-thermal interaction in an infinite semiconductor material containing a spherical hole

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The dual phase lag (DPL) heat transfer model is applied to study the photo-thermal interaction in an infinite semiconductor medium containing a spherical hole. The inner surface of the cavity was traction free and loaded thermally by pulse heat flux. By using the eigenvalue approach methodology and Laplace’s transform, the physical variable solutions are obtained analytically. The numerical computations for the silicon-like semiconductor material are obtained. The comparison among the theories, i.e., dual phase lag (DPL), Lord and Shulman’s (LS) and the classically coupled thermoelastic (CT) theory is presented graphically. The results further show that the analytical scheme can overcome mathematical problems by analyzing these problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Mandelis, Photoacoustic and Thermal Wave Phenomena in Semiconductors (Elsevier Science Pub. Co., Inc., New York, 1987)

  2. D.P. Almond, P. Patel, Photothermal Science and Techniques (Springer Science & Business Media, 1996)

  3. A. Mandelis, P. Hess, Semiconductors and Electronic Materials (Spie Press, 2000)

  4. H.W. Lord, Y. Shulman, J. Mech. Phys. Solids 15, 299 (1967)

    Article  ADS  Google Scholar 

  5. A.E. Green, K.A. Lindsay, J. Elast. 2, 1 (1972)

    Article  Google Scholar 

  6. R.S. Dhaliwal, H.H. Sherief, Quart. Appl. Math. 38, 1 (1980)

    Article  MathSciNet  Google Scholar 

  7. D.Y. Tzou, J. Heat Transf. 117, 8 (1995)

    Article  Google Scholar 

  8. D.Y. Tzou, J. Thermophys. Heat Transf. 9, 686 (1995)

    Article  Google Scholar 

  9. I.A. Abbas, A.M. Zenkour, J. Comput. Theor. Nanosci. 11, 642 (2014)

    Article  Google Scholar 

  10. A.E. Abouelregal, S. Abo-Dahab, J. Therm. Stresses 35, 820 (2012)

    Article  Google Scholar 

  11. Y. Song et al., Int. J. Solids Struct. 47, 1871 (2010)

    Article  Google Scholar 

  12. Y. Song et al., Int. J. Thermophys. 35, 305 (2014)

    Article  ADS  Google Scholar 

  13. Y. Song, J. Bai, Z. Ren, Int. J. Thermophys. 33, 1270 (2012)

    Article  ADS  Google Scholar 

  14. Y. Song, J. Bai, Z. Ren, Acta Mech. 223, 1545 (2012)

    Article  MathSciNet  Google Scholar 

  15. F.A. McDonald, G.C. Wetsel jr., J. Appl. Phys. 49, 2313 (1978)

    Article  ADS  Google Scholar 

  16. W. Jackson, N.M. Amer, J. Appl. Phys. 51, 3343 (1980)

    Article  ADS  Google Scholar 

  17. R. Stearns, G. Kino, Appl. Phys. Lett. 47, 1048 (1985)

    Article  ADS  Google Scholar 

  18. J. Opsal, A. Rosencwaig, Appl. Phys. Lett. 47, 498 (1985)

    Article  ADS  Google Scholar 

  19. A. Rosencwaig, J. Opsal, D.L. Willenborg, Appl. Phys. Lett. 43, 166 (1983)

    Article  ADS  Google Scholar 

  20. I.A. Abbas, Int. J. Comput. Mater. Sci. Eng. 5, 1650016 (2016)

    Google Scholar 

  21. A.D. Hobiny, I.A. Abbas, Mech. Time-Dependent Mater. 21, 61 (2017)

    Article  ADS  Google Scholar 

  22. I.A. Abbas, R. Kumar, Steel Compos. Struct. 20, 1103 (2016)

    Article  Google Scholar 

  23. A.M. Zenkour, A.E. Abouelregal, Steel Compos. Struct. 18, 909 (2015)

    Article  Google Scholar 

  24. A. Heidarpour, M.A. Bradford, K.A.M. Othman, J. Construct. Steel Res. 67, 1806 (2011)

    Article  Google Scholar 

  25. N.S. Hamzehkolaei, P. Malekzadeh, J. Vaseghi, Steel Compos. Struct. 11, 341 (2011)

    Article  Google Scholar 

  26. S.M. Said, M.I. Othman, Struct. Eng. Mech. 57, 201 (2016)

    Article  Google Scholar 

  27. S.A. Hosseini, M.H. Abolbashari, S.M. Hosseini, Struct. Eng. Mech. 60, 529 (2016)

    Article  Google Scholar 

  28. I.A. Abbas, F.S. Alzahrani, Steel Compos. Struct. 21, 791 (2016)

    Article  Google Scholar 

  29. M. Saadatfar, M. Aghaie-Khafri, Smart Struct. Syst. 15, 1411 (2015)

    Article  Google Scholar 

  30. R. Kakar, S. Kakar, Earthq. Struct. 9, 577 (2015)

    Article  Google Scholar 

  31. D. Todorović, J. Phys. IV (Proc.) 125, 551 (2005)

    Google Scholar 

  32. D. Todorović, Rev. Sci. Instrum. 74, 582 (2003)

    Article  ADS  Google Scholar 

  33. A. Mandelis, M. Nestoros, C. Christofides, Opt. Eng. 36, 459 (1997)

    Article  ADS  Google Scholar 

  34. A.M. Zenkour, A.E. Abouelregal, J. Therm. Sci. Technol. 10, JTST0019 (2015)

    Article  Google Scholar 

  35. N.C. Das, A. Lahiri, R.R. Giri, Indian J. Pure Appl. Math. 28, 1573 (1997)

    MathSciNet  Google Scholar 

  36. I.A. Abbas, Mech. Based Design Struct. Mach. 43, 501 (2015)

    Article  Google Scholar 

  37. H. Stehfest, Commun. ACM 13, 47 (1970)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrahim A. Abbas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hobiny, A.D., Abbas, I.A. A DPL model of photo-thermal interaction in an infinite semiconductor material containing a spherical hole. Eur. Phys. J. Plus 133, 11 (2018). https://doi.org/10.1140/epjp/i2018-11814-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-11814-6

Navigation