Advertisement

Motion through a non-homogeneous porous medium: Hydrodynamic permeability of a membrane composed of cylindrical particles

  • Pramod Kumar Yadav
Regular Article

Abstract.

The present problem is concerned with the flow of a viscous steady incompressible fluid through a non-homogeneous porous medium. Here, the non-homogeneous porous medium is a membrane built up by cylindrical particles. The flow outside the membrane is governed by the Stokes equation and the flow through the non-homogeneous porous membrane composed by cylindrical particles is governed by Darcy’s law. In this work, we discussed the effect of various fluid parameters like permeability parameter \( k_{0}\), discontinuity coefficient at fluid-non homogeneous porous interface, viscosity ratio of viscous incompressible fluid region and non-homogeneous porous region, etc. on hydrodynamic permeability of a membrane, stress and on velocity profile. The comparative study for hydrodynamic permeability of membrane built up by non-homogeneous porous cylindrical particles and porous cylindrical shell enclosing a cylindrical cavity has been studied. The effects of various fluid parameters on the streamlines flow patterns are also discussed.

References

  1. 1.
    G.G. Stokes, On the Theories of the Internal Friction of Fluids in Motion, and of the Equilibrium and Motion of Elastic Bodies (Cambridge Philosophical Society, 1851)Google Scholar
  2. 2.
    H.P.G. Darcy, Les fontaines publiques de la ville de Dijon Paris (Victor Dalmont, 1856)Google Scholar
  3. 3.
    D.D. Joseph, L.N. Tao, Z. Angew. Math. Mech. 44, 361 (1964)CrossRefGoogle Scholar
  4. 4.
    D.A. Nield, A. Bejan, Convection in Porous Media (Springer, New York, 1999)Google Scholar
  5. 5.
    L. Preziosi, A. Farina, Int. J. Non-Linear Mech. 37, 485 (2002)CrossRefGoogle Scholar
  6. 6.
    G.S. Beavers, D.D. Joseph, J. Fluid Mech. 30, 197 (1967)ADSCrossRefGoogle Scholar
  7. 7.
    I.P. Jones, Proc. Camb. Philos. Soc. 73, 231 (1973)ADSCrossRefGoogle Scholar
  8. 8.
    J. Masliyah, G. Neale, K. Malysa, T.V. de Ven, Chem. Eng. Sci. 4, 245 (1987)CrossRefGoogle Scholar
  9. 9.
    Y. Qin, P.N. Kaloni, Z. Angew. Math. Mech. 73, 77 (1993)MathSciNetCrossRefGoogle Scholar
  10. 10.
    W.W. Hackborn, Can. Appl. Math. Quart. 8, 171 (2000)MathSciNetCrossRefGoogle Scholar
  11. 11.
    I.B. Stechkina, Fluid Dyn. 14, 912 (1979)ADSCrossRefGoogle Scholar
  12. 12.
    I. Pop, P. Cheng, Int. J. Eng. Sci. 30, 257 (1992)CrossRefGoogle Scholar
  13. 13.
    M.P. Singh, J.L. Gupta, Z. Angew. Math. Mech. 54, 17 (1971)CrossRefGoogle Scholar
  14. 14.
    S. Deo, Sadhana 29, 381 (2004)CrossRefGoogle Scholar
  15. 15.
    M. Ellero, M. Kroger, S. Hess, J. Non-Newtonian Fluid Mech. 105, 35 (2002)CrossRefGoogle Scholar
  16. 16.
    A.S. Kim, R. Yuan, J. Membr. Sci. 249, 89 (2005)CrossRefGoogle Scholar
  17. 17.
    E.I. Saad, Meccanica 48, 1747 (2013)MathSciNetCrossRefGoogle Scholar
  18. 18.
    D. Palaniappan, K. Archana, S.K. Khan, Z. Angew. Math. Mech. 77, 791 (1997)MathSciNetCrossRefGoogle Scholar
  19. 19.
    S.M. Datta, Shukla, Cal. Math. Soc. 95, 63 (2003)Google Scholar
  20. 20.
    P.D. Verma, B.S. Bhatt, J. Pure Appl. Math. 15, 908 (1976)Google Scholar
  21. 21.
    S. Whitaker, Transp. Porous Media 1, 3 (1986)CrossRefGoogle Scholar
  22. 22.
    F.R. Mandujano, F. Peralta, Rev. Mex. Fis. 51, 87 (2005)Google Scholar
  23. 23.
    S. Deo, P.K. Yadav, Int. J. Math. Math. Sci. 2008, 651910 (2008)CrossRefGoogle Scholar
  24. 24.
    N.S. Cheng, Z.Y. Hao, S.K. Tan, Exp. Therm. Fluid Sci. 32, 1538 (2008)CrossRefGoogle Scholar
  25. 25.
    S. Deo, P.K. Yadav, A. Tiwari, Appl. Math. Mod. 34, 1329 (2010)CrossRefGoogle Scholar
  26. 26.
    S. Deo, A.N. Filippov, A. Tiwari, S.I. Vasin, V. Starov, Adv. Colloid Interface Sci. 164, 21 (2011)CrossRefGoogle Scholar
  27. 27.
    J. Prakash, G.P. Raja Sekhar, Meccanica 47, 1079 (2012)MathSciNetCrossRefGoogle Scholar
  28. 28.
    O.V. Grigoreva, Sh.Kh. Zaripov, Russ. Aeronaut. 55, 19 (2012)CrossRefGoogle Scholar
  29. 29.
    P.K. Yadav, S. Deo, Meccanica 47, 1499 (2012)MathSciNetCrossRefGoogle Scholar
  30. 30.
    P.K. Yadav, Meccanica 48, 1607 (2013)MathSciNetCrossRefGoogle Scholar
  31. 31.
    M.S. Valipour, S. Rashidi, M. Bovand, R. Masoodi, Eur. J. Mech. 46, 74 (2014)CrossRefGoogle Scholar
  32. 32.
    A. Barletta, L. Storesletten, Int. J. Therm. Sci. 97, 9 (2015)CrossRefGoogle Scholar
  33. 33.
    S. Srinivasan, K.R. Rajagopal, Int. J. Non-Linear Mech. 78, 112 (2016)ADSCrossRefGoogle Scholar
  34. 34.
    B.R. Jaiswal, B.R. Gupta, Meccanica 52, 69 (2017)MathSciNetCrossRefGoogle Scholar
  35. 35.
    E.I. Saad, Meccanica 47, 2055 (2012)MathSciNetCrossRefGoogle Scholar
  36. 36.
    I.V. Chernyshev, Fluid Dyn. 35, 147 (2000)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    J. Happel, H. Brenner, Low Reynolds Number Hydrodynamics (Prentice-Hall Inc., UK, 1965) chapt. 4Google Scholar
  38. 38.
    S.I. Vasin, A.N. Filippov, V.M. Starov, Adv. Coll. Interface Sci. 139, 83 (2008)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsMotilal Nehru National Institute of Technology AllahabadAllahabadIndia

Personalised recommendations