Numerical modelling of phase-change material used for PV panels cooling

  • Assia SellamiEmail author
  • Rabie Elotmani
  • Khalid Kandoussi
  • Mohamed Eljouad
  • Abdelowahed Hajjaji
  • M’Hamed Boutaous
Regular Article


Passive cooling of a PV solar panel using phase-change material (PCM) may play an important role in increasing efficiency of PV cells. Because it does not need a maintenance and does not release greenhouses gases, PCM seems to be a good way to decrease the among of overheating of PV cell. The aims of this paper describes a detailed multiphysical issue in order to understand the effect of PCM (RT25) in keeping PV cell temperature close to ambient. The study is focused on modeling the heat and mass transfer in a PCM domain by modifying the buoyancy term in momentum equation. Due to a phase-change and free convection, transient incompressible flow is taken into account to explain the dynamic variations of the velocity profile and viscosity distribution. With standard condition of irradiation and heat flux on both sides of the PV panel, a melt front has been tracked by the energy equation, which gives a good argument for the temperature evolution during phase-change.


  1. 1.
    A. Hasan, S.J. McCormack, M.J. Huang, B. Norton, Energies 7, 1318 (2014)CrossRefGoogle Scholar
  2. 2.
    D. Zhou, C.-Y. Zhao, Y. Tian, Appl. Energy 92, 593 (2012)CrossRefGoogle Scholar
  3. 3.
    F. Agyenim, N. Hewitt, P. Eames, M. Smyth, Renew. Sustain. Energy Rev. 14, 615 (2010)CrossRefGoogle Scholar
  4. 4.
    L.F. Cabeza, A. Castell, C. Barreneche, A. De Gracia, A. Fernández, Renew. Sustain. Energy Rev. 15, 1675 (2011)CrossRefGoogle Scholar
  5. 5.
    M. Huang, P. Eames, B. Norton, Int. J. Heat Mass Transfer 47, 2715 (2004)CrossRefGoogle Scholar
  6. 6.
    R. Barzin, J.J. Chen, B.R. Young, M.M. Farid, Appl. Energy 163, 9 (2016)CrossRefGoogle Scholar
  7. 7.
    A. Kabeel, M. Abdelgaied, Desalination 383, 22 (2016)CrossRefGoogle Scholar
  8. 8.
    L. Ni, D. Qv, Y. Yao, F. Niu, W. Hu, Appl. Therm. Eng. 100, 434 (2016)CrossRefGoogle Scholar
  9. 9.
    F. Souayfane, F. Fardoun, P.-H. Biwole, Energy Build. 129, 396 (2016)CrossRefGoogle Scholar
  10. 10.
    X. Jin, M.A. Medina, X. Zhang, Appl. Therm. Eng. 103, 1057 (2016)CrossRefGoogle Scholar
  11. 11.
    G. Serale, F. Goia, M. Perino, Sol. Energy 134, 429 (2016)ADSCrossRefGoogle Scholar
  12. 12.
    A. Machniewicz, D. Knera, D. Heim, Energy Proc. 78, 1684 (2015)CrossRefGoogle Scholar
  13. 13.
    M. Cellura, V.L. Brano, A. Marvuglia, A photovoltaic panel coupled with a phase changing material heat storage system in hot climates, DREAM University of Palermo, PLEA, Dublin (2008)Google Scholar
  14. 14.
    M. Lacroix, Numer. Heat Transf. Part A 24, 143 (1993)ADSCrossRefGoogle Scholar
  15. 15.
    F. Samara, D. Groulx, P.H. Biwole, Natural convection driven melting of phase-change material: comparison of two methods, in Excerpt from the Proceeding of the COMSOL Conference (2012)Google Scholar
  16. 16.
    P.H. Biwole, P. Eclache, F. Kuznik, Phase-change materials to improve solar panel’s performance, presented at the Energy and Buildings, 2013Google Scholar
  17. 17.
    Y.-M. Chen, C.-H. Lee, H.-C. Wu, IEEE Trans. Energy Convers. 20, 467 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    N. Ukrainczyk, S. Kurajica, J. Sipušić, Chem. Biochem. Eng. Quart. 24, 129 (2010)Google Scholar
  19. 19.
    Anon, RUBITHERM data sheet (Co. RUBITHERM GmbH, Hamburg, Germany, 2000)Google Scholar
  20. 20.
    R. Viskanta, C. Gau, J. Heat Transf. 108, 174 (1986)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Chouaib Doukkali University of El JadidaNational School of Applied Sciences, Science Engineer Laboratory for Energy (LabSIPE)EL JadidaMorocco
  2. 2.CETHIL, UMR 5008, CNRS, INSA LyonUniversité Lyon 1Villeurbanne CEDEXFrance

Personalised recommendations