Influence of non-integer order parameter and Hartmann number on the heat and mass transfer flow of a Jeffery fluid over an oscillating vertical plate via Caputo-Fabrizio time fractional derivatives

Regular Article


In this work, semi analytical solutions for the heat and mass transfer of a fractional MHD Jeffery fluid over an infinite oscillating vertical plate with exponentially heating and constant mass diffusion via the Caputo-Fabrizio fractional derivative are obtained. The governing equations are transformed into dimensionless form by introducing dimensionless variables. A modern definition of the Caputo-Fabrizio derivative has been used to develop the fractional model for a Jeffery fluid. The expressions for temperature, concentration and velocity fields are obtained in the Laplace transformed domain. We have used the Stehfest’s and Tzou’s algorithm for the inverse Laplace transform to obtain the semi analytical solutions for temperature, concentration and velocity fields. In the end, in order to check the physical impact of flow parameters on temperature, concentration and velocity fields, results are presented graphically and in tabular forms.


  1. 1.
    N. Dalir, M. Dehsara, S.S. Nourazar, Energy 79, 351 (2015)CrossRefGoogle Scholar
  2. 2.
    I. Khan, Z. Naturforsch. A 70, 397 (2015)ADSCrossRefGoogle Scholar
  3. 3.
    A. Zeeshan, A. Majeed, Alex. Eng. J. 55, 2171 (2016)CrossRefGoogle Scholar
  4. 4.
    M.M. Bhatti, A. Zeeshan, Mod. Phys. Lett. B 30, 1650196 (2016)ADSCrossRefGoogle Scholar
  5. 5.
    M. Pourabdian, M. Qate, M.R. Morad, A. Javareshkian, The Jeffery-Hamel flow and heat transfer of nanofluids by homotopy perturbation method and Comparison with Numerical Results, arXiv:1601.05298 (2016)Google Scholar
  6. 6.
    N.A.M. Zin, I. Khan, S. Shafie, Math. Probl. Eng., (2016)
  7. 7.
    M. Kothandapani, J. Prakash, Appl. Nanosci. 6, 323 (2016)ADSCrossRefGoogle Scholar
  8. 8.
    R. Ellahi, M.M. Bhatti, I. Pop, Int. J. Numer. Methods Heat Fluid Flow 26, 1802 (2016)CrossRefGoogle Scholar
  9. 9.
    S.A. Gaffar, V.R. Prasad, E.K. Reddy, AIN Shams Eng. J., (2016)
  10. 10.
    M.M. Rashidi, M. Nasiri, M. Khezerloo, N. Laraqi, J. Magn. & Magn. Mater. 93, 674 (2016)Google Scholar
  11. 11.
    O. Anwar Bég, M.J. Uddin, M.M. Rashidi, N. Kavyani, J. Eng. Thermophys. 23, 79 (2014)CrossRefGoogle Scholar
  12. 12.
    A. Basiri Parsa, M.M. Rashidi, O. Anwar Bég, S.M. Sadri, Comput. Biol. Med. 43, 1142 (2013)CrossRefGoogle Scholar
  13. 13.
    S. Abbasbandy, T. Hayat, A. Alsaedi, M.M. Rashidi, Int. J. Numer. Methods Heat Fluid Flow 24, 390 (2014)CrossRefGoogle Scholar
  14. 14.
    F. Mabood, S.M. Ibrahim, M.M. Rashidi, M.S. Shadloo, G. Lorenzini, Int. J. Heat Mass Transfer 93, 674 (2016)CrossRefGoogle Scholar
  15. 15.
    M.M. Rashidi, N. Laraqi, A. Basiri Parsa, Heat Transf. Asian Res. 40, 187 (2011)CrossRefGoogle Scholar
  16. 16.
    J. Mohanty, J.K. Das, S.R. Mishra, Model. Meas. Control Ser. B 83, 1 (2014)Google Scholar
  17. 17.
    J. Ahmed, A. Shahzad, M. Khan, R. Ali, AIP Adv. 5, 117 (2015)Google Scholar
  18. 18.
    T. Hayat, R. Sajjad, S. Asghar, Commun. Nonlinear Sci. Numer. Simul. 15, 2400 (2010)ADSCrossRefMathSciNetGoogle Scholar
  19. 19.
    K. Das, N. Acharya, P.K. Kundu, Alex. Eng. J. 54, 815 (2015)CrossRefGoogle Scholar
  20. 20.
    K. Maqbool, A.B. Mann, M.H. Tiwana, Alex. Eng. J., (2017)
  21. 21.
    S. Jena1, S.R. Mishra, G.C. Dash, Int. J. Appl. Comput. Math., (2016)
  22. 22.
    M. Imtiaz, T. Hayat, A. Alsaedi, PLoS ONE, (2016)
  23. 23.
    K. Ahmad, A. Ishak, Malays. J. Math. Sci. 10, 311 (2016)MathSciNetGoogle Scholar
  24. 24.
    N. Shahid, Springer Plus 4, 640 (2015)CrossRefGoogle Scholar
  25. 25.
    D. Vieru, C. Fetecau, C. Fetecau, Therm. Sci. 19, S85 (2015)CrossRefGoogle Scholar
  26. 26.
    I. Khan, N.A. Shah, D. Vieru, Eur. Phys. J. Plus 131, 181 (2016)CrossRefGoogle Scholar
  27. 27.
    F. Ali, S.A.A. Jan, I. Khan, M. Gohar, N.A. Sheikh, Eur. Phys. J. Plus 131, 310 (2016)CrossRefGoogle Scholar
  28. 28.
    M.A. Imran, I. Khan, M. Ahmad, N.A. Shah, M. Nazar, J. Mol. Liq., (2017)
  29. 29.
    M.A. Imran, N.A. Shah, I. Khan, Maryam Aleem, Neural Comput. Appl., (2017)
  30. 30.
    M. Caputo, M. Fabrizio, Progr. Fract. Differ. Appl. 1, 73 (2015)Google Scholar
  31. 31.
    M. Caputo, M. Fabrizio, Progr. Fract. Differ. Appl. 2, 1 (2016)CrossRefGoogle Scholar
  32. 32.
    A. Atangana, D. Baleanu, Therm. Sci. 20, 763 (2016)CrossRefGoogle Scholar
  33. 33.
    N.A. Shah, I. Khan, Eur. Phys. J. C, (2016)
  34. 34.
    A.A. Zafar, C. Fetecau, Alex. Eng. J., (2016)
  35. 35.
    M.A. Imran, N.A. Shah, Maryam Aleem, I. Khan, Eur. Phys. J. Plus 132, 340 (2017)CrossRefGoogle Scholar
  36. 36.
    M. Saqib, F. Ali, I. Khan, N.A. Shiekh, S.A. Jan, S. Haq, Alex. Eng. J., (2017)
  37. 37.
    M. Abdullah, N. Raza, A.R. Butt, E.U. Haque, Can. J. Phys. 95, 472 (2017)ADSCrossRefGoogle Scholar
  38. 38.
    N. Raza, M. Abdullah, A.R. Butt, A.U. Awan, E.U. Haque, Alex. Eng. J., (2017)
  39. 39.
    M. Tahir, M.A. Imran, N. Raza, M. Abdullah, Results Phys. 7, 1887 (2017)ADSCrossRefGoogle Scholar
  40. 40.
    H. Sheng, Y. Li, Y.Q. Chen, J. Franklin Inst. 348, 317 (2011)CrossRefGoogle Scholar
  41. 41.
    D.K. Tong, X.M. Zhang, X.H. Zhang, J. Non-Newtonian Fluid Mech. 156, 75 (2009)CrossRefGoogle Scholar
  42. 42.
    Y. Jiang, H. Qi, H. Xu, X. Jiang, J. Non-Newtonian Fluid Mech. 21, 7 (2017)Google Scholar
  43. 43.
    H. Stehfest, Commun. ACM 13, 47 (1970)CrossRefGoogle Scholar
  44. 44.
    D.Y. Tzou, Macro to Microscale Heat Transfer: The Lagging Behavior (Taylor and Francis, Washington, 1970)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • A. R. Butt
    • 1
  • M. Abdullah
    • 1
  • N. Raza
    • 2
  • M. A. Imran
    • 3
  1. 1.Department of MathematicsUniversity of Engineering & TechnologyLahorePakistan
  2. 2.Department of MathematicsUniversity of the PunjabLahorePakistan
  3. 3.Department of MathematicsUniversity of Management & TechnologyLahorePakistan

Personalised recommendations