Physical characterization of NEA Large Super-Fast Rotator (436724) 2011 UW158

  • A. Carbognani
  • B. L. Gary
  • J. Oey
  • G. Baj
  • P. Bacci
Regular Article
Part of the following topical collections:
  1. Focus Point on Highlights of Planetary Science in Italy


Asteroids of size larger than 0.15km generally do not have periods smaller than 2.2 hours, a limit known as cohesionless spin barrier. This barrier can be explained by the cohesionless rubble-pile structure model. There are few exceptions to this “rule”, called LSFRs (Large Super-Fast Rotators), as (455213) 2001 OE84, (335433) 2005 UW163 and 2011 XA3. The near-Earth asteroid (436724) 2011 UW158 was followed by an international team of optical and radar observers in 2015 during the flyby with Earth. It was discovered that this NEA is a new candidate LSFR. With the collected lightcurves from optical observations we are able to obtain the amplitude-phase relationship, sideral rotation period (\(PS = 0.610752 \pm 0.000001\) h), a unique spin axis solution with ecliptic coordinates \(\lambda = 290^{\circ} \pm 3^{\circ}\), \(\beta = 39^{\circ} \pm 2^{\circ}\) and the asteroid 3D model. This model is in qualitative agreement with the results from radar observations.


  1. 1.
    A.V. Ipatov, Yu.S. Bondarenko, Yu.D. Medvedev, N.A. Mishina, D.A. Marshalov, L.A. Benner, Astron. Lett. 42, 850 (2016)ADSCrossRefGoogle Scholar
  2. 2.
    S.P. Naidu et al., Am. Astron. Soc. DPS meeting 47, 204 (2015)Google Scholar
  3. 3.
    P. Pravec, A.W. Harris, Icarus 148, 12 (2000)ADSCrossRefGoogle Scholar
  4. 4.
    P. Pravec, P. Kušnirák, L. Šarounová, A.W. Harris, in Proceedings of Asteroids, Comets, Meteors - ACM 2002, pp. 743--745Google Scholar
  5. 5.
    C. Chan-Kao et al., Astrophys. J. Lett. 791, L35 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    S. Urakawa, K., Ohtsuka, S. Abe, T. Ito, Astron. J. 147, 121 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    K.A. Holsapple, Icarus 187, 500 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    P. Sànchez, D.J. Scheeres, Meteor. Planet. Sci. 49, 788 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    M. Hicks, K. Lawrence, H. Rhoades et al., Astron. Telegr. 2116, 1 (2009)ADSGoogle Scholar
  10. 10.
    C.W. Hergenrother, R. Whiteley, Icarus 214, 194 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    A. Carbognani, P. Pravec, P. Kušnirák, K. Hornoch, A. Galád, S. Monte, M. Bertaina, Mem. Soc. Astron. It. 87-1, 66 (2016)ADSGoogle Scholar
  12. 12.
    B.L. Gary, Minor Planet Bull. 43, 33 (2016)ADSGoogle Scholar
  13. 13.
    A. Carbognani, Minor Planet Bull. 43-4, 290 (2016)ADSGoogle Scholar
  14. 14.
    V.G. Schevchenko, Sol. Syst. Res. 31, 219 (1997)ADSGoogle Scholar
  15. 15.
    I.N. Belskaya, V.G. Schevchenko, Icarus 147, 94 (2000)ADSCrossRefGoogle Scholar
  16. 16.
    V. Zappalá, A. Cellino, A.M. Barucci, M. Fulchignoni, D.F. Lupishko, Astron. Astrophys. 231, 548 (1990)ADSGoogle Scholar
  17. 17.
    M. Kaasalainen, J. Torppa, Icarus 153, 24 (2001)ADSCrossRefGoogle Scholar
  18. 18.
    M. Kaasalainen, J. Torppa, K. Muinonen, Icarus 153, 37 (2001)ADSCrossRefGoogle Scholar
  19. 19.
    A. Carbognani, B.L. Gary, J. Oey, G. Baj, P. Bacci, Minor Planet Bull. 43, 38 (2016)ADSGoogle Scholar
  20. 20.
    A. La Spina, P. Paolicchi, A. Kryszczynksa, P. Pravec, Nature 428, 400 (2004)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Astronomical Observatory of the Autonomous Region of Aosta Valley (OAVdA)AostaItaly
  2. 2.Hereford Arizona ObservatoryHereford (Cochise)USA
  3. 3.Blue Mountains ObservatoryLeura (Sydney)Australia
  4. 4.Astronomical Station of MonteviascoMonteviasco (Varese)Italy
  5. 5.Astronomical Observatory of San Marcello PistoieseSan Marcello Pistoiese (Pistoia)Italy

Personalised recommendations