Tests for comparing weighted histograms. Review and improvements

  • Nikolay D. GagunashviliEmail author


Histograms with weighted entries are used to estimate probability density functions. Computer simulation is the main application of this type of histograms. A review on chi-square tests for comparing weighted histograms is presented in this paper. Improvements to these tests that have a size closer to its nominal value are proposed. Numerical examples are presented for evaluation and demonstration of various applications of the tests.


  1. 1.
    H. Cramer, Mathematical Methods of Statistics (Princeton University Press, Princeton, 1999)Google Scholar
  2. 2.
    K. Pearson, Phil. Mag. 50, 157 (1900)CrossRefGoogle Scholar
  3. 3.
    R.A. Fisher, J. R. Stat. Soc. 87, 442 (1924)Google Scholar
  4. 4.
    N.D. Gagunashvili, Nucl. Instrum. Methods A 596, 439 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    N.D. Gagunashvili, Comput. Phys. Commun. 183, 418 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    N.D. Gagunashvili, J. Instrum. 10, P05004 (2015)CrossRefGoogle Scholar
  7. 7.
    N.D. Gagunashvili, Nucl. Instrum. Methods A 614, 287 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    N.D. Gagunashvili, Comput. Phys. Commun. 183, 193 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    G. Bohm, G. Zech, Nucl. Instrum. Methods A 691, 171 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    H. Robbins, Bull. Am. Math. Soc. 54, 1151 (1948)CrossRefGoogle Scholar
  11. 11.
    R.P. Brent, Algorithms for Minimization without Derivatives, Chapt. 4 (Prentice-Hall, Englewood Cliffs, NJ, 1973)Google Scholar
  12. 12.
    W.G. Cochran, Ann. Math. Stat. 23, 315 (1952)CrossRefGoogle Scholar
  13. 13.
    M.G. Kendall, A.S. Stuart, The Advanced Theory of Statistics, Vol. 2, chapt. 30, sec. 30.9 (Griffin Publishing Company, London, 1973)Google Scholar
  14. 14.
    S. Baker, R.D. Cousins, Nucl. Instrum. Methods 221, 437 (1984)CrossRefGoogle Scholar
  15. 15.
    D.S. Moore, G.P. McCabe, Introduction to the Practice of Statistics (W. H. Freeman Publishing Company, New York, 2005)Google Scholar
  16. 16.
    I.M. Sobol, Numerical Monte Carlo Methods, chapt. 5 (Nauka, Moscow, 1973)Google Scholar
  17. 17.
    G. Breit, E. Wigner, Phys. Rev. 49, 519 (1936)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.University of IcelandReykjavikIceland

Personalised recommendations