Advertisement

Application of the Legendre wavelets method to the parallel plate flow of a third grade fluid and forced convection in a porous duct

  • N. Ali
  • Mati Ullah
  • M. Sajid
  • S. U. KhanEmail author
Regular Article
  • 65 Downloads

Abstract.

A method based on Legendre wavelets is presented in this paper to discuss the flow of a third grade fluid between parallel plates and the forced convection in a porous duct. The flow problems are modeled in terms of integral equations which are then solved by the Legendre wavelets method. The comparison between present results and the existing solutions shows that the Legendre wavelets method is a powerful tool for solving nonlinear boundary value problems. We hope this method can be used for solving many interesting problems arising in non-Newtonian fluids.

References

  1. 1.
    R.L. Fosdick, K.R. Rajagopal, Proc. R Soc. London A 369, 351 (1980)ADSCrossRefGoogle Scholar
  2. 2.
    A.M. Siddiqui, A. Zeb, Q.K. Ghori, Chaos, Solitons Fractals 36, 182 (2008)ADSCrossRefMathSciNetGoogle Scholar
  3. 3.
    K. Fakhar, A.H. Kara, I. Khan, M. Sajid, Comput. Math. Appl. 61, 980 (2011)CrossRefMathSciNetGoogle Scholar
  4. 4.
    T. Hayat, M.A. Farooq, T. Javed, M. Sajid, Nonlinear Anal. 10, 745 (2009)CrossRefGoogle Scholar
  5. 5.
    M. Sajid, R. Mahmood, T. Hayat, Comput. Math. Appl. 56, 1236 (2008)CrossRefMathSciNetGoogle Scholar
  6. 6.
    K.R. Rajagopal, Mech. Res. Commun. 7, 21 (1980)CrossRefGoogle Scholar
  7. 7.
    K.R. Rajagopal, Int. J. Non-linear Mech. 14, 361 (1979)ADSCrossRefGoogle Scholar
  8. 8.
    M. Sajid, Numer. Methods Part. Differ. Equ. 26, 221 (2010)CrossRefGoogle Scholar
  9. 9.
    T. Cebeci, P. Bradshaw, Physical and Computational Aspects of Convective Heat Transfer (Springer-Verlag, 1988)Google Scholar
  10. 10.
    K. Vajravelu, K.V. Prasad, H.E. Press, Keller-Box Method Andits Application (Walter De Gruyter Incorporated, 2013)Google Scholar
  11. 11.
    T.Y. Na, Computational Methods in Engineering Boundary Value Problems (Academic Press, 1979)Google Scholar
  12. 12.
    P.D. Ariel, Int. J. Numer. Methods Fluid 14, 757 (1992)ADSCrossRefGoogle Scholar
  13. 13.
    S. Liao, Beyond Perturbation: Introduction to the Homotopy Analysis Method (Taylor & Francis, 2003)Google Scholar
  14. 14.
    J.H. He, Phys. Lett. A 350, 87 (2006)ADSCrossRefMathSciNetGoogle Scholar
  15. 15.
    J.H. He, Comput. Methods Appl. Mech. Eng. 178, 257 (1999)ADSCrossRefGoogle Scholar
  16. 16.
    J.H. He, Int. J. Non-Linear Mech. 34, 699 (1999)ADSCrossRefGoogle Scholar
  17. 17.
    G. Adomian, J. Math. Anal. Appl. 135, 501 (1988)CrossRefMathSciNetGoogle Scholar
  18. 18.
    J.K. Zhou, Differential Transformation and its Application for Electrical Circuits (Huarjung University Press, Wuuhahn, China, 1986)Google Scholar
  19. 19.
    N.M. Sarif, M.Z. Salleh, R. Nazar, Proc. Eng. 53, 542 (2013)CrossRefGoogle Scholar
  20. 20.
    R.C. Bataller, Appl. Math. Comput. 206, 832 (2008)MathSciNetGoogle Scholar
  21. 21.
    R. Cortell, Appl. Math. Comput. 217, 4086 (2008)MathSciNetGoogle Scholar
  22. 22.
    Z. Abbas, Y. Wang, T. Hayat, M. Oberlack, Int. J. Non-Linear Mech. 43, 783 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    Z. Abbas, Y. Wang, T. Hayat, M. Oberlack, Int. J. Numer. Methods Fluids 59, 443 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    Z. Abbas, Y. Wang, T. Hayat, M. Oberlack, Nonlinear Anal. Real World Appl. 11, 3218 (2010)CrossRefMathSciNetGoogle Scholar
  25. 25.
    B. Sahoo, Commun. Nonlinear Sci. Numer. Simulat. 14, 811 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    B. Sahoo, F. Labrpulu, Comput. Math. Appl. 63, 1244 (2012)CrossRefMathSciNetGoogle Scholar
  27. 27.
    S.J. Liao, J. Fluid Mech. 385, 101 (1999)ADSCrossRefMathSciNetGoogle Scholar
  28. 28.
    S.J. Liao, J. Fluid Mech. 488, 189 (2003)ADSCrossRefMathSciNetGoogle Scholar
  29. 29.
    A.M. Siddiqui, T. Haroon, S. Irum, Comput. Math. Appl. 58, 2274 (2009)CrossRefMathSciNetGoogle Scholar
  30. 30.
    Z. Odibat, S. Momani, Comput. Math. Appl. 58, 2199 (2009)CrossRefMathSciNetGoogle Scholar
  31. 31.
    A.M. Siddiqui, M. Hameed, B.M. Siddiqui, Q.K. Ghori, Commun. Nonlinear Sci. Numer. Simulat. 15, 2388 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    M. Keimanesh, M.M. Rashidi, A.J. Chamkha, R. Jafari, Comput. Math. Appl. 62, 2871 (2011)CrossRefMathSciNetGoogle Scholar
  33. 33.
    C.K. Chui, An Introduction to Wavelets (Academic Press, 1992)Google Scholar
  34. 34.
    E. Babolian, A. Shahsavaran, J. Comput. Appl. Math. 225, 87 (2009)ADSCrossRefMathSciNetGoogle Scholar
  35. 35.
    J.S. Guf, W.S. Jiang, Int. J. Syst. Sci. 27, 623 (1996)CrossRefGoogle Scholar
  36. 36.
    S. Yousefi, M. Razzaghi, Math. Comput. Simulat. 70, 1 (2005)CrossRefGoogle Scholar
  37. 37.
    A.K. Dizicheh, F. Ismail, Kajani M. Tavassoli, M. Maleki, J. Appl. Math. 2013, 591636 (2013)CrossRefGoogle Scholar
  38. 38.
    C. Yang, J. Hou, Bound. Value Probl. 2013, 142 (2013)CrossRefGoogle Scholar
  39. 39.
    S.S. Motsa, P. Sibanda, S. Shateyi, Commun. Nonlinear Sci. Numer. Simulat. 15, 2293 (2010)ADSCrossRefGoogle Scholar
  40. 40.
    S.A. Yousefi, Int. J. Inf. Syst. Sci 3, 243 (2007)MathSciNetGoogle Scholar
  41. 41.
    S. Islam, I. Aziz, A.S. Al-Fhaid, A. Shah, Appl. Math. Model. 37, 9455 (2013)CrossRefMathSciNetGoogle Scholar
  42. 42.
    H. Jafari, S.A. Yousefi, M.A. Firoozjaee, S. Momani, C.M. Khalique, Comput. Math. Appl. 62, 1038 (2011)CrossRefMathSciNetGoogle Scholar
  43. 43.
    S.G. Venkatesh, S.K. Ayyaswamy, S.R. Balachandar, Comput. Math. Appl. 63, 1287 (2012)CrossRefMathSciNetGoogle Scholar
  44. 44.
    S.A. Yousefi, A. Lotfi, Cent. Eur. J. Phys. 11, 1463 (2013)Google Scholar
  45. 45.
    M. Mahalakshmi, G. Hariharan, K. Kannan, J. Math. Chem. 51, 2361 (2013)CrossRefMathSciNetGoogle Scholar
  46. 46.
    S.G. Venkatesh, S.K. Ayyaswamy, S.R. Balachandar, Appl. Math. Sci. 6, 2289 (2012)MathSciNetGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsInternational Islamic UniversityIslamabadPakistan
  2. 2.Department of MathematicsComsats Institute of Information TechnologySahiwalPakistan

Personalised recommendations