Is there a resting frame in the universe? A proposed experimental test based on a precise measurement of particle mass

  • Donald C. ChangEmail author
Open Access
Regular Article


According to the Special Theory of Relativity, there should be no resting frame in our universe. Such an assumption, however, could be in conflict with the Standard Model of cosmology today, which regards the vacuum not as an empty space. Thus, there is a strong need to experimentally test whether there is a resting frame in our universe or not. We propose that this can be done by precisely measuring the masses of two charged particles moving in opposite directions. If all inertial frames are equivalent, there should be no detectable mass difference between these two particles. If there is a resting frame in the universe, one will observe a mass difference that is dependent on the orientation of the laboratory frame. The detailed experimental setup is discussed in this paper.


  1. 1.
    A.A. Michelson, E.W. Morley, Am. J. Sci. 34, 333 (1887)CrossRefGoogle Scholar
  2. 2.
    A. Einstein, The Principle of Relativity: A Collection of Original Memoirs on the Special and General Theory of Relativity (Dover Publications, New York, 1952)Google Scholar
  3. 3.
    A. Einstein, Relativity: The Special and General Theory (Pi Press, New York, 2005) p. 19, translated by R.W. LawsonGoogle Scholar
  4. 4.
    A.H. Guth, D.I. Kaiser, Science 307, 884 (2005)ADSCrossRefMathSciNetGoogle Scholar
  5. 5.
    C.L. Bennett et al., Astrophys. J. Suppl. Ser. 208, 20B (2013)ADSCrossRefGoogle Scholar
  6. 6.
    Plank Collaboration, R. Adam et al., Astron. Astrophys. 594, A1 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    A. Messiah, Quantum Mechanics (Wiley, New York, 1965) p. 439Google Scholar
  8. 8.
    L.H. Ryder, Quantum Field Theory (Cambridge University Press, New York, 1996) p. 284Google Scholar
  9. 9.
    P.S. Faragó, L. Jánossy, Nuovo Cimauts 5, 1411 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    A.N. Cox, Ed., Allen's Astrophysical Quantities (AIP Press, Springer, New York, 2000) pp. 244-245Google Scholar
  11. 11.
    NASA Earth Fact Sheet (19 May 2016) available online at
  12. 12.
    M.A. Garlick, The Story of the Solar System (Cambridge University Press, New York, 2002) p. 46Google Scholar
  13. 13.
    G. Hinshaw et al., Astrophys. J. Suppl. Ser. 180, 225 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    A. Kogut et al., Astrophys. J. 419, (1993)Google Scholar
  15. 15.
    K. Blaum, Y.N. Novikov, G. Werth, Contemp. Phys. 51, 149 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    S. Sturm, F. Köhler, J. Zatorski, A. Wagner, Z. Harman, G. Werth, W. Quint, C.H. Keitel, K. Blaum, Nature 506, 467 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    M. Artuso, Sensor compendium, arXiv:1310.5158 [Physics. Ins-Det]
  18. 18.
    M. Battaglia et al., Nucl. Instrum. Methods Phys. Res. Sect. A 622, 669 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    C.P. Slichter, Principles of Magnetic Resonance (Springer-Verlag, Berlin, Hong Kong, 1990)Google Scholar
  20. 20.
    A.P. French, Special Relativity (Norton, 1968) pp. 20--28Google Scholar
  21. 21.
    D.C. Chang, J. Mod. Phys. 7, 395 (2016)CrossRefGoogle Scholar
  22. 22.
    D.C. Chang, arXiv:0404044v2 [physics.gen-ph] (2016)Google Scholar
  23. 23.
    S. Kachru, R. Kallosh, A. Linde, S.P. Trivedi, Phys. Rev. D 68, 046005 (2003)ADSCrossRefMathSciNetGoogle Scholar
  24. 24.
    A.H. Guth, D.I. Kaiser, Y. Nomura, Phys. Lett. B 733, 112 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    H. Mueller et al., Phys. Rev. D 68, 116006 (2003)ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  1. 1.Hong Kong University of Science and TechnologyClear Water BayHong KongChina

Personalised recommendations