Advertisement

Exciton effects on the nonlinear optical properties of semiparabolic quantum dot under electric field

  • D. BejanEmail author
Regular Article

Abstract.

The effects of exciton and electric field on the nonlinear optical properties, such as refraction index change, optical absorption coefficient and optical rectification of semiparabolic one-dimensional quantum dot, were theoretically investigated. The energy eigenvalues and eigenfunctions are calculated numerically within the effective mass approximation for a typical GaAs/ Al0.3Ga0.7 As quantum dot, for the cases where there is an exciton or a single electron/hole in the structure. Optical properties are obtained using the compact density matrix approach and steady state solutions. Our results show that: i) if the increasing electric field is oriented along the growth direction, the refractive index change structure and the resonance peaks of the absorption coefficient and optical rectification present a blue shift and are weakened for exciton and electron systems but have a red shift and are strengthened for the hole system; ii) when the field, oriented against the growth direction, augments, the above optical parameters present a red shift and are increased for exciton and electron systems but have a blue shift and are lowered for the hole system; iii) the exciton presence in the structure enhances the amplitude of the resonant peaks of all optical parameters even at zero electric field.

References

  1. 1.
    D.A.B. Miller et al., Phys. Rev. B 32, 1043 (1985)ADSCrossRefGoogle Scholar
  2. 2.
    G. Pozina, G. Hemminson, H. Amano, B. Monemar, Appl. Phys. Lett. 102, 082110 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    L. Zhang, H.-J. Xie, Phys. Rev. B 68, 235315 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    I. Karabulut, U. Atav, H. Safak, Phys. Rev. B 72, 207301 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    L. Zhang, J.J. Shi, Phys. Status Solidi B 242, 1001 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    I. Karabulut, H. Safak, Physica B 368, 82 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    I. Karabulut, H. Safak, M. Tomak, Solid State Commun. 135, 735 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    M.J. Karimi, G. Rezaei, Physica B 406, 4423 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    F. Ungan, J.C. Martínez-Orozco, R.L. Restrepo, M.E. Mora-Ramos, E. Kasapoglu, C.A. Duque, Superlattice Microstruct. 81, 26 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    J.-H Yuan, Y. Zhang, H. Mo, N. Chen, Z.-H. Zhang, Opt. Commun. 356, 405 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    J.-H Yuan, Y. Zhang, H. Mo, N. Chen, Z.-H. Zhang, Physica E 77, 102 (2016)ADSCrossRefGoogle Scholar
  12. 12.
    Y.-B. Yu, S.-N. Zhu, K.-X. Guo, Phys. Lett. A 335, 175 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    S. Baskoutas, E. Paspalakis, A.F. Terzis, Phys. Rev. B 74, 153306 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    S. Baskoutas, E. Paspalakis, A.F. Terzis, Phys. Status Solidi C 4, 292 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    C.-J. Zhang, K.-X. Guo, Z.-E Lu, Physica E 36, 92 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    I. Karabulut, H. Safak, M. Tomak, J. Phys. D: Appl. Phys. 41, 155104 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    G. Rezaei, M.J. Karimi, A. Keshavarz, Physica E 43, 475 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    J.E. Bautista, M.L. Lyra, R.P.A. Lima, Photon. Nanostruct. 11, 8 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    J. Flórez, A. Camacho, Nanoscale Res. Lett. 6, 268 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    N. Eseanu, Phys. Lett. A 374, 1278 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    M. Cristea, Eur. Phys. J. Plus 131, 86 (2016)CrossRefGoogle Scholar
  22. 22.
    J.V. Lill, G.A. Parker, J.C. Light, Chem. Phys. Lett. 89, 483 (1982)ADSCrossRefGoogle Scholar
  23. 23.
    J.C. Light, I.P. Hamilton, J.V. Lill, J. Chem. Phys. 82, 1400 (1985)ADSCrossRefGoogle Scholar
  24. 24.
    D.T. Colbert, W.H. Miller, J. Chem. Phys. 96, 1982 (1992)ADSCrossRefGoogle Scholar
  25. 25.
    E. Paspalakis, J. Boviatsis, S. Baskoutas, J. Appl. Phys. 114, 153107 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    D.A.B. Miller et al., Phys. Rev. Lett. 53, 2173 (1984)ADSCrossRefGoogle Scholar
  27. 27.
    D.A.B. Miller, Opt. Photon. News 1, 7 (1990)ADSCrossRefGoogle Scholar
  28. 28.
    D.A.B. Miller, in Quantum Dynamics of Simple Systems, edited by G.-L. Oppo, S.M. Barnett, E. Riis, M. Wilkinson (Institute of Physics, London, 1996)Google Scholar
  29. 29.
    D.A.B. Miller, Opt. Quantum Electron. 22, S61 (1990)CrossRefGoogle Scholar
  30. 30.
    D.A.B. Miller, Appl. Opt. 49, F59 (2010)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Faculty of PhysicsUniversity of BucharestBucharestRomania

Personalised recommendations