Solar System and stellar tests of noncommutative spectral geometry

Regular Article

Abstract.

By using purely geometric forces on a noncommutative spacetime, noncommutative spectral geometry (NCSG) was proposed as a possible way to unify gravitation with the other known fundamental forces. The correction of the NCSG solution to Einstein's general relativity (GR) in the four-dimensional spacetime can be characterized by a parameter \(\beta\sim 1/\sqrt{f_{0}}\), where \( f_{0}\) denotes the coupling constants at the unification. The parameter \( \beta\) contributes a Yukawa-type correction \(\mathrm{exp}(-\beta r)/r\) to the Newtonian gravitational potential at the leading order, which can be interpreted as either the massive component of the gravitational field or the typical range of interactions carried by that component of the field. As an extension of previous works, we mainly focus on the Solar System and stellar tests of the theory, and the constraints on \(\beta\) obtained by the present work is independent of the previous ones. In the Solar System, we investigate the effects of the NCSG on the perihelion shift of a planet, deflection of light, time delay at superior conjunction (SC) and inferior conjunction (IC), and the Cassini experiment by modeling new observational results and adopting new datasets. In the binary pulsars system, based on the observational data sets of four systems of binary pulsars, PSR B1913+16, PSR B1534+12, PSR J0737-3039, and PSR B2127+11C, the secular periastron precessions are used to constrain this theory. These effects in the scale of the Solar System and binary pulsars were not considered in previous works. We find that the lower bounds given by these experiments are \(\beta \simeq 10^{-9} \sim 10^{-10}\) m-1, considerably smaller than those obtained in laboratory experiments. This confirms that experiments and observations at smaller scales are more favorable for testing the NCSG theory.

References

  1. 1.
    A. Connes, Noncommutative Geometry (Academic Press, New York, 1994)Google Scholar
  2. 2.
    A. Connes, M. Marcolli, Noncommutative Geometry, Quantum Fields and Motives (American Mathematical Society, USA, 2007)Google Scholar
  3. 3.
    M. Sakellariadou, Int. J. Mod. Phys. D 20, 785 (2011)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    W. Nelson, J. Ochoa, M. Sakellariadou, Phys. Rev. D 82, 085021 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    G. Lambiase, M. Sakellariadou, A. Stabile, J. Cosmol. Astropart. Phys. 12, 020 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    W. Nelson, J. Ochoa, M. Sakellariadou, Phys. Rev. Lett. 105, 101602 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    S. Capozziello, G. Lambiase, M. Sakellariadou, A. Stabile, A. Stabile, Phys. Rev. D 91, 044012 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    E.V. Pitjeva, N.P. Pitjev, Mon. Not. R. Astron. Soc. 432, 3431 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    N.P. Pitjev, E.V. Pitjeva, Astron. Lett. 39, 141 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    L. Iorio, Celest. Mech. Dyn. Astron. 112, 117 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    L. Iorio, Mon. Not. R. Astron. Soc. 444, L78 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    D. Dirkx, R. Noomen, P.N.A.M. Visser, L.I. Gurvits, L.L.A. Vermeersen, Astron. Astrophys. 587, A156 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    L. Iorio, Astrophys. Space Sci. 362, 11 (2017)ADSCrossRefGoogle Scholar
  14. 14.
    A.J.S. Capistrano, W.L. Roque, R.S. Valada, Mon. Not. R. Astron. Soc. 444, 1639 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    A.J.S. Capistrano, J.A.M. Peñagos, M.S. Alárcon, Mon. Not. R. Astron. Soc. 463, 1587 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    X.M. Deng, Y. Xie, Astrophys. Space Sci. 350, 103 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    X.M. Deng, Y. Xie, New Astron. 35, 36 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    X.M. Deng, Y. Xie, Int. J. Theor. Phys. 54, 1739 (2015)CrossRefGoogle Scholar
  19. 19.
    X.M. Deng, Y. Xie, Ann. Phys. 361, 62 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    X.M. Deng, Y. Xie, Eur. Phys. J. C 75, 539 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    X.M. Deng, Y. Xie, Mod. Phys. Lett. A 31, 1650021 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    L. Iorio, E.N. Saridakis, Mon. Not. R. Astron. Soc. 427, 1555 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    L. Iorio, Class. Quantum Grav. 30, 165018 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    L. Iorio, Int. J. Mod. Phys. D 23, 1450006 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    L. Iorio, Class. Quantum Grav. 31, 085003 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    L. Iorio, Mon. Not. R. Astron. Soc. 437, 3482 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    Y. Xie, X.M. Deng, Mon. Not. R. Astron. Soc. 433, 3584 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    S.S. Zhao, Y. Xie, Phys. Rev. D 92, 064033 (2015)ADSCrossRefGoogle Scholar
  29. 29.
    Z.W. Li, S.F. Yuan, C. Lu, Y. Xie, Res. Astron. Astrophys. 14, 139 (2014)ADSCrossRefGoogle Scholar
  30. 30.
    S. Liang, Y. Xie, Res. Astron. Astrophys. 14, 527 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    M.Y. Liu, Z.H. Zhong, Y.C. Han, X.Y. Wang, Z.S. Yang, Y. Xie, Res. Astron. Astrophys. 14, 1019 (2014)ADSCrossRefGoogle Scholar
  32. 32.
    E.B. Fomalont, S.M. Kopeikin, Astrophys. J. 598, 704 (2003)ADSCrossRefGoogle Scholar
  33. 33.
    E. Fomalont, S. Kopeikin, G. Lanyi, J. Benson, Astrophys. J. 699, 1395 (2009)ADSCrossRefGoogle Scholar
  34. 34.
    B. Bertotti, L. Iess, P. Tortora, Nature 425, 374 (2003)ADSCrossRefGoogle Scholar
  35. 35.
    X.M. Deng, Y. Xie, T.Y. Huang, Phys. Rev. D 79, 044014 (2009)ADSCrossRefGoogle Scholar
  36. 36.
    X.M. Deng, Sci. Chin. G 54, 2071 (2011)CrossRefGoogle Scholar
  37. 37.
    C. Lu, Z.W. Li, S.F. Yuan, Z. Wan, S.H. Qin, K. Zhu, Y. Xie, Res. Astron. Astrophys. 14, 1301 (2014)ADSCrossRefGoogle Scholar
  38. 38.
    Y. Xie, Res. Astron. Astrophys. 13, 1 (2013)ADSCrossRefGoogle Scholar
  39. 39.
    J.M. Weisberg, Y. Huang, Astrophys. J. 829, 55 (2016)ADSCrossRefGoogle Scholar
  40. 40.
    I.H. Stairs, S.E. Thorsett, J.H. Taylor, A. Wolszczan, Astrophys. J. 581, 501 (2002)ADSCrossRefGoogle Scholar
  41. 41.
    M. Kramer, I.H. Stairs, R.N. Manchester, M.A. McLaughlin, A.G. Lyne, R.D. Ferdman, M. Burgay, D.R. Lorimer, A. Possenti, N. D'Amico, J.M. Sarkissian, G.B. Hobbs, J.E. Reynolds, P.C.C. Freire, F. Camilo, Science 314, 97 (2006)ADSCrossRefGoogle Scholar
  42. 42.
    B.A. Jacoby, P.B. Cameron, F.A. Jenet, S.B. Anderson, R.N. Murty, S.R. Kulkarni, Astrophys. J. Lett. 644, L113 (2006)ADSCrossRefGoogle Scholar
  43. 43.
    J. Danby, Fundamentals of Celestial Mechanics (MacMillan, New York, 1962)Google Scholar
  44. 44.
    G.B. Arfken, H.J. Weber, Mathematical Methods for Physicists, 6th edition (Elsevier, Amsterdam, 2005)Google Scholar
  45. 45.
    X.M. Deng, Y. Xie, Mon. Not. R. Astron. Soc. 431, 3236 (2013)ADSCrossRefGoogle Scholar
  46. 46.
    S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (Wiley, New York, 1972)Google Scholar
  47. 47.
    W. Rindler, Relativity: Special, General, and Cosmological, 2nd edition (Oxford University Press, Oxford, UK, 2006)Google Scholar
  48. 48.
    A.K. Verma, A. Fienga, J. Laskar, K. Issautier, H. Manche, M. Gastineau, Astron. Astrophys. 550, A124 (2013)ADSCrossRefGoogle Scholar
  49. 49.
    R.A. Nelson, Metrologia 48, S171 (2011)ADSCrossRefGoogle Scholar
  50. 50.
    C.M. Will, Living Rev. Relativ. 9, 3 (2006)ADSCrossRefGoogle Scholar
  51. 51.
    J. Lense, H. Thirring, Phys. Z. 19, 156 (1918)Google Scholar
  52. 52.
    F.P. Pijpers, Astron. Astrophys. 402, 683 (2003)ADSCrossRefGoogle Scholar
  53. 53.
    L. Iorio, Astron. Astrophys. 433, 385 (2005)ADSCrossRefGoogle Scholar
  54. 54.
    L. Iorio, H.I.M. Lichtenegger, M.L. Ruggiero, C. Corda, Astrophys. Space Sci. 331, 351 (2011)ADSCrossRefGoogle Scholar
  55. 55.
    L. Iorio, Sol. Phys. 281, 815 (2012)ADSCrossRefGoogle Scholar
  56. 56.
    L. Iorio, Phys. Rev. D 84, 124001 (2011)ADSCrossRefGoogle Scholar
  57. 57.
    L. Iorio, Gen. Relativ. Gravit. 44, 719 (2012)ADSCrossRefGoogle Scholar
  58. 58.
    L. Iorio, Astron. Astrophys. 431, 385 (2005)ADSCrossRefGoogle Scholar
  59. 59.
    E.V. Pitjeva, Sol. Syst. Res. 47, 386 (2013)ADSCrossRefGoogle Scholar
  60. 60.
    Y. Kozai, Astron. J. 64, 367 (1959)ADSMathSciNetCrossRefGoogle Scholar
  61. 61.
    R.D. Reasenberg, I.I. Shapiro, P.E. MacNeil, R.B. Goldstein, J.C. Breidenthal, J.P. Brenkle, D.L. Cain, T.M. Kaufman, T.A. Komarek, A.I. Zygielbaum, Astrophys. J. Lett. 234, L219 (1979)ADSCrossRefGoogle Scholar
  62. 62.
    C.W.F. Everitt, D.B. Debra, B.W. Parkinson, J.P. Turneaure, J.W. Conklin, M.I. Heifetz, G.M. Keiser, A.S. Silbergleit, T. Holmes, J. Kolodziejczak, M. Al-Meshari, J.C. Mester, B. Muhlfelder, V.G. Solomonik, K. Stahl, P.W. Worden Jr., W. Bencze, S. Buchman, B. Clarke, A. Al-Jadaan, H. Al-Jibreen, J. Li, J.A. Lipa, J.M. Lockhart, B. Al-Suwaidan, M. Taber, S. Wang, Phys. Rev. Lett. 106, 221101 (2011)ADSCrossRefGoogle Scholar
  63. 63.
    J.K. Hoskins, R.D. Newman, R. Spero, J. Schultz, Phys. Rev. D 32, 3084 (1985)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Purple Mountain ObservatoryChinese Academy of SciencesNanjingChina

Personalised recommendations