Is an increased use of biofuels the road to sustainability?

Consequences of the methodological approach
  • Sheshti JohanssonEmail author
  • Torbjörn Rydberg
Part of the following topical collections:
  1. Focus Point on Plants for food, energy and sustainability


The global area of planted biofuel crops has been increasing rapidly, but the environmental and social consequences of widespread adoption of biofuel production remain largely unexplored. How do we measure efficiency and net energy of a complex system, such as the interaction between agriculture, human society and technology? This paper provides background and identifies assumptions in its overview of competing and overlapping methods. We emphasize that biofuels, as well as all other resources with their associated processes, should be analyzed as embedded in complex systems. The reason why society looks at biofuels favorably is because the methodological approaches used in the present scientific literature are narrow and far from holistic. What is excluded from the analysis has crucial implications on what is regarded as sustainable.


  1. 1.
    O. Cavalett, T. Rydberg, in Emergy Synthesis 6: Theory and Applications of the Emergy Methodology, edited by M.T. Brown (University of Florida Center for Environmental Policy, Gainesville, 2011) p. 175--183Google Scholar
  2. 2.
    WWF, Soy Expansion -- Losing Forests to Fields (2003) available on-line at the following link:
  3. 3.
    F. Fargione et al., Science 319, 1235 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    J.B. Guinée, Handbook on Life Cycle Assessment. Operational guide to the ISO standards (Kluwer Academic Publishers, Dordrecht, 2002)Google Scholar
  5. 5.
    M.T. Brown, S. Ulgiati, J. Clean. Prod. 10, 321 (2002)CrossRefGoogle Scholar
  6. 6.
    R. Costanza et al., Nature 387, 253 (1997)ADSCrossRefGoogle Scholar
  7. 7.
    H.T. Odum, Environmental accounting: Emergy and environmental decision making (John Wiley, New York, 1996)Google Scholar
  8. 8.
    P.P. Franzese et al., Ecol. Indic. 9, 959 (2009)CrossRefGoogle Scholar
  9. 9.
    UN, Transforming our world -- the 2030 agenda for sustainable development (A/RES/70/1)
  10. 10.
    W. Steffen, Science (2015), DOI:10.1126/science.1259855
  11. 11.
    M.E.D. Olivera et al., BioScience 55, 593 (2005)CrossRefGoogle Scholar
  12. 12.
    I.C. Macedo, Biomass Bioenergy 14, 77 (1998)CrossRefGoogle Scholar
  13. 13.
    M. Giampietro, K. Mayumi, The Biofuel Delusion -- The fallacy of large-scale agro- biofuel production (Earthscan, London, UK, 2009)Google Scholar
  14. 14.
    D. Pimentel, T.W. Patzek, Nat. Resour. Res. 14, 65 (2005)CrossRefGoogle Scholar
  15. 15.
    S. Ulgiati, Crit. Rev. Plant Sci. 20, 71 (2001)CrossRefGoogle Scholar
  16. 16.
    FAO, How to Feed the World in 2050 (2009), available on-line at the following link:
  17. 17.
    K. Johansson et al., Ambio 39, 91 (2010)CrossRefGoogle Scholar
  18. 18.
    E. Felix, D.R. Tilley, Energy 34, 410 (2009)CrossRefGoogle Scholar
  19. 19.
    P. Paulsson, Energy analysis of ethanol productionGoogle Scholar
  20. 20.
    Swedish Government, Uthållig användning av Torv (Sustainable use of Peat) Statens offentliga utredningar, SOU 2002:100 (2002) p. 29Google Scholar
  21. 21.
    M.T. Brown, S. Ulgiati, Ecol. Eng. 9, 51 (1997)CrossRefGoogle Scholar
  22. 22.
    S. Johansson et al., Acta Agric. Scand., Sect. B 64, 109 (2014)Google Scholar
  23. 23.
    A. Granstedt, Farming for the future -- with a focus on the Baltic Sea Region (Trosa Tryckeri AB, Trosa, Sweden, 2012)Google Scholar
  24. 24.
    D.A. Bergquist et al., Environ. Dev. Sustain. 14, 167 (2012)CrossRefGoogle Scholar
  25. 25.
    M. Pollan, The Omnivore's Dilemma -- The search for a perfect meal in a fast-food world (Bloomsbury Publishing Plc, London, 2006) ISBN 978-1-4088-1218-1Google Scholar
  26. 26.
    P. Börjesson, Appl. Energy 86, 589 (2008)CrossRefGoogle Scholar
  27. 27.
    H.T. Odum, Environment, Power and Society for the twenty-first century -- The hierarchy of energy (Columbia University Press, New York, 2007)Google Scholar
  28. 28.
    M. Höök, Coal and Oil: The dark monarchs of Global Energy: Understanding Supply and Extraction Patterns and their importance for future production (Acta Universitatis Upsaliensis, Uppsala, 2010)Google Scholar
  29. 29.
    M. Giampietro et al., BioScience 47, 587 (1997)CrossRefGoogle Scholar
  30. 30.
    H. Shapouri, The 2001 Net Energy Balance of Corn- Ethanol (preliminary) (US Department of Agriculture, Washington, DC, 2004)Google Scholar
  31. 31.
    A.E. Farrell, R.J. Plevin, B.T. Turner, A.D. Jones, M.O. O'Hare, D.M. Kammen, Science 311, 506 (2006)ADSCrossRefGoogle Scholar
  32. 32.
    S. Ahlgren, Future Vehicle Fuel Supply for Swedish Agriculture (Department of Energy and Technology, Swedish University of Agricultural Sciences, Uppsala, 2010) Report 020Google Scholar
  33. 33.
    J. Hill et al., Proc. Natl. Acad. Sci. 103, 11206 (2006)ADSCrossRefGoogle Scholar
  34. 34.
    P. Börjesson, Livscykelanalys av Salixproduktion (Lunds tekniska högskola, Institutionen för teknik och samhälle, Avd. för miljö och energisystem, Lund, 2006) Rapport nr. 60Google Scholar
  35. 35.
    M. Giampietro, Energy analysis for a sustainable future -- multi-scale integrated analysis of societal and ecosystem metabolism (Routhledge, Abingdon, 2013)Google Scholar
  36. 36.
    H. Fredriksson et al., Agric. Syst. 89, 184 (2006)CrossRefGoogle Scholar
  37. 37.
    P.-A. Hansson et al., Agric. Syst. 94, 704 (2007)CrossRefGoogle Scholar
  38. 38.
    J.Y. Zhu, X.S. Zhuang, Prog. Energy Combust. Sci. 38, 583 (2012)CrossRefGoogle Scholar
  39. 39.
    B. Gilland, Outlook Agric. 14, 56 (1985)Google Scholar
  40. 40.
    S. Johansson, EPJ Web of Conferences 54, 01014 (2013)CrossRefGoogle Scholar
  41. 41.
    T. Rehl et al., Renew. Sustain. Energy Rev. 16, 3766 (2012)CrossRefGoogle Scholar
  42. 42.
    R. Fraser, J.J. Kay, Exergy analysis of eco-systems: Establishing a role for the thermal sensing, in Thermal Remote Sensing in Land surface Processes, edited by D. Quattrochi, J. Luvall (Taylor & Francis Publishers, London, 2002)Google Scholar
  43. 43.
    I. Ekroth, E. Granryd, Tillämpad termodynamik (Institutionen för energiteknik, avdelningen för Tillämpad termodynamik och kylteknik, Kungliga Tekniska Högskolan, Stockholm, 1994)Google Scholar
  44. 44.
    G. Wall, Exergy -- A useful concept within resource accounting (Institute of Theoretical Physics, Göteborg, Sweden, 1977)Google Scholar
  45. 45.
    G. Wall et al., Energy 19, 1267 (1994)CrossRefGoogle Scholar
  46. 46.
    S.E. Jorgensen, S.N. Nielsen, Energy 32, 673 (2007)CrossRefGoogle Scholar
  47. 47.
    K. Gaudreau et al., Sustainability 1, 1444 (2009)CrossRefGoogle Scholar
  48. 48.
    A. Hornborg, Resilience 1, 116 (2013)CrossRefGoogle Scholar
  49. 49.
    E.T. Jaynes, The second law as physical fact and as human interference (1998), available on-line at the following link:
  50. 50.
    H.T. Odum, Living with complexity, Lecture given at The Crafoord Price in the BioSciences (The Royal Swedishn Academy of Sciences, 1987) pp. 203--251Google Scholar
  51. 51.
    H.T. Odum, Science 242, 1132 (1988)ADSCrossRefGoogle Scholar
  52. 52.
    I. Prigogine, P. Glansdorff, Thermodynamic Theory of Structure, Stability and Fluctuations (John Wiley and Sons, New York, 1971)Google Scholar
  53. 53.
    M.T. Brown, R.A. Herendeen, Ecol. Econ. 19, 219 (1996)CrossRefGoogle Scholar
  54. 54.
    C. Giannantoni, in Proceedings of the IV Biennial International Workshop ``Advances in Energy Studies'', 200, edited by E. Ortega, S. Ulgiati (Unicamp, Campinas, SP, Brazil, 2004) pp. 139--157Google Scholar
  55. 55.
    J.M. Malmaeus, Sustainability 8, 490 (2016)CrossRefGoogle Scholar
  56. 56.
    T. Piketty, Capital in the 20th century (The Belknap Press of Harvard University Press, Cambridge, 2014)Google Scholar
  57. 57.
    C. Hall, Peak Oil, EROI, Investments and the Economy in an Uncertain Future, in Biofuels, Solar and Wind as Renewable Energy Systems, edited by D. Pimentel (Springer Netherlands, 2008) pp. 109--132Google Scholar
  58. 58.
    M.T. Brown, S. Ulgiati, Ecol. Model. 223, 879 (2011)CrossRefGoogle Scholar
  59. 59.
    Millennium Ecosystem Assessment, Ecosystems and Human well-being: Synthesis (Island Press, Washington, 2005) p. 160Google Scholar
  60. 60.
    K. Mulder, J.N. Hagens, Ambio 37, 74 (2008)CrossRefGoogle Scholar
  61. 61.
    S. Johansson, Socio-economic analysis of biogas and biogas combined with ethanol from organic agriculture (Technical University of Denmark, Risø National Laboratory for Sustainable Energy, 2011)Google Scholar
  62. 62.
    S.J. Doherty, Systems Analysis of the Solar Emergy Basis for Forest Alternatives in Sweden (College of Forestry, Garpenberg, Sweden, 1995) final report to the Swedish State Power Board, p. 112Google Scholar
  63. 63.
    P. Hagström, Biomass Potential for Heat, Electricity and Vehicle Fuel in Sweden (Acta Universitatis Agriculturae Sueciae, 2006)Google Scholar
  64. 64.
    M. Larsson, Hållbar utveckling och ekonomi inom planetens gränser (Studentlitteratur AB, Lund, 2012)Google Scholar
  65. 65.
    Swedish Board of Agriculture (Jordbruksverket), Användning av naturgödsel och andra typer av animaliska biprodukter som gödningsmedel (Swedish Board of Agriculture, 2012) available at djurprodukter/organiskagodningsmedel.4.7caa00cc126738ac4e8800014876.html (in Swedish)
  66. 66.
    G.A. Cornia, World Dev. 13, 131 (1985)CrossRefGoogle Scholar
  67. 67.
    P. Rosset, Development 43, 77 (2000)CrossRefGoogle Scholar
  68. 68.
    B. Halweil, Can Organic Farming Feed Us All?, in World Watch, Vol. 19 (2006)Google Scholar
  69. 69.
    C.B. Barett et al., World Dev. 38, 88 (2009)CrossRefGoogle Scholar
  70. 70.
    L.G. Horlings, T.K. Marsden, Glob. Environ. Change 21, 441 (2011)CrossRefGoogle Scholar
  71. 71.
    O. de Schutter, Report on the right to food (UN Human Rights Council, 2011)
  72. 72.
    P.M. Rosset, The multiple functions and benefits of small scale agriculture in the context of global trade negotiation (Institute for Food and Development Policy, Oakland, CA, USA, 1999) Policy Brief No. 4Google Scholar
  73. 73.
    S. Carnot, Reflexions sur la puissance motrice du feu sur les machines propres a developper cette puissance (Bachelier, Libraire, Paris, 1824)Google Scholar
  74. 74.
    J. Lovelock, Gaia -- a new look at life on earth (first published in 1979, Oxford University Press, New York, 2000)Google Scholar
  75. 75.
    E. Friman, No Limits: The 20th Century Discourse of Economic Growth, Doctorate Thesis, Department of Historical Studies, Umeå University, S-901 87 Umeå (2002)Google Scholar
  76. 76.
    S. Doherty, in Proceeding in ``The World Grows Organic'' -- 13th International Federation of Organic Agriculture Movement Scientific Conference, 28-31 August 2000 (Basel, Switzerland, 2000)Google Scholar
  77. 77.
    T. Rydberg, J. Jansén, Ecol. Eng. 19, 13 (2002)CrossRefGoogle Scholar
  78. 78.
    J. Chen et al., Trends Renew. Energy 1, 185 (2015)Google Scholar
  79. 79.
    N. Trivedi et al., Bioresour. Technol. 150, 106 (2013)CrossRefGoogle Scholar
  80. 80.
    N. Trivedi et al., Algal Res. 9, 48 (2015)CrossRefGoogle Scholar
  81. 81.
    M. Giampietro, S. Ulgiati, Crit. Rev. Plant Sci. 24, 365 (2007)CrossRefGoogle Scholar
  82. 82.
    IFIAS, Energy analysis (Stockholm, 1974) Workshop Report no. 6, p. 89Google Scholar
  83. 83.
    IPCC, Climate Change 2007 -- The physical science basis (Cambridge University Press, New York, 2007)Google Scholar
  84. 84.
    M.T. Brown et al., Ecol. Model. 222, 879 (2011)CrossRefGoogle Scholar
  85. 85.
    K. Aleklett, Peeking at Peak Oil (Springer, 2012)Google Scholar
  86. 86.
    A.U. Ayres, Ecology vs. Economics: Confusing Production and Consumption (Center of the Management of Environmental Resources, INSEAD, Fontainebleau, France, 1998)Google Scholar
  87. 87.
    B.A. Mansson, J.M. McGlade, Oecologica 93, 582 (1993)CrossRefGoogle Scholar
  88. 88.
    C.J. Cleveland et al., Ecol. Econ. 32, 301 (2000)CrossRefGoogle Scholar
  89. 89.
    H.T. Odum, Oecologica 104, 518 (1995)CrossRefGoogle Scholar
  90. 90.
    B.C. Patten, Oecologica 93, 579 (1993)CrossRefGoogle Scholar
  91. 91.
    T. Verwijst, Analyses of bioenergy systems -- why do they produce different answers? in Bioenergy -- for what and how much? edited by B. Johansson (The Swedish Research Council for Environment, Agricultural Science and Spatial Planning, Stockholm, 2008) pp. 167--182Google Scholar
  92. 92.
    C. Giannantoni, The Maximum Em-Power Principle as the basis for Thermodynamics of Quality (Servizi Grafici Editoriali, Ditoriali, Padova, 2002) p. 185Google Scholar
  93. 93.
    J.S. Barbara, The False Promise of Biofuels, Special Report (International Forum on Globalization and the Institute for Policy Studies, 2007) p. 18Google Scholar
  94. 94.
    I. Prigogine, The End of Certainty (The Free Press, New York, 1997)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Energy and TechnologySwedish University of Agricultural SciencesUppsalaSweden
  2. 2.Faculty of Natural Resources and Agricultural SciencesSwedish University of Agricultural SciencesUppsalaSweden

Personalised recommendations