Advertisement

Surface effects on the vibration behavior of flexoelectric nanobeams based on nonlocal elasticity theory

  • Farzad EbrahimiEmail author
  • Mohammad Reza Barati
Regular Article

Abstract.

In this research, vibration characteristics of a flexoelectric nanobeam in contact with Winkler-Pasternak foundation is investigated based on the nonlocal elasticity theory considering surface effects. This nonclassical nanobeam model contains flexoelectric effect to capture coupling of strain gradients and electrical polarizations. Moreover, the nonlocal elasticity theory is employed to study the nonlocal and long-range interactions between the particles. The present model can degenerate into the classical model if the nonlocal parameter, flexoelectric and surface effects are omitted. Hamilton's principle is employed to derive the governing equations and the related boundary conditions which are solved applying a Galerkin-based solution. Natural frequencies are verified with those of previous papers on nanobeams. It is illustrated that flexoelectricity, nonlocality, surface stresses, elastic foundation and boundary conditions affects considerably the vibration frequencies of piezoelectric nanobeams.

References

  1. 1.
    X., Jiang, W. Huang, S. Zhang, Nano Energy 2, 1079 (2013)CrossRefGoogle Scholar
  2. 2.
    M.E. Gurtin, A.I. Murdoch, Arch. Ration. Mech. Anal. 57, 291 (1975)CrossRefGoogle Scholar
  3. 3.
    F. Ebrahimi (Editor), Nanocomposites: New Trends and Developments (InTech, Croatia, 2012)Google Scholar
  4. 4.
    F. Ebrahimi, M. Boreiry, Appl. Phys. A 121, 1305 (2015)ADSCrossRefGoogle Scholar
  5. 5.
    Z. Yan, L.Y. Jiang, Nanotechnology 22, 245703 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    C. Zhang, W. Chen, C. Zhang, Eur. J. Mech. A/Solids 41, 50 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    L.L. Zhang, J.X. Liu, X.Q. Fang, G.Q. Nie, Physica E 57, 169 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    Y.S. Li, E. Pan, Comp. Struct. 136, 45 (2016)MathSciNetCrossRefGoogle Scholar
  9. 9.
    A.C. Eringen, Int. J. Eng. Sci. 10, 1 (1972)MathSciNetCrossRefGoogle Scholar
  10. 10.
    A.C. Eringen, J. Appl. Phys. 54, 4703 (1983)ADSCrossRefGoogle Scholar
  11. 11.
    F. Ebrahimi, M. Ghadiri, E. Salari, S.A.H. Hoseini, G.R. Shaghaghi, J. Mech. Sci. Technol. 29, 1207 (2015)CrossRefGoogle Scholar
  12. 12.
    F. Ebrahimi, M.R. Barati, Arab. J. Sci. Eng. 41, 1679 (2016)CrossRefGoogle Scholar
  13. 13.
    F. Ebrahimi, M.R. Barati, Eur. Phys. J. Plus 131, 279 (2016)CrossRefGoogle Scholar
  14. 14.
    F. Ebrahimi, M.R. Barati, Appl. Phys. A 122, 792 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    F. Ebrahimi, M.R. Barati, Appl. Phys. A 122, 880 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    F. Ebrahimi, E. Salari, Acta Astron. 113, 29 (2015)CrossRefGoogle Scholar
  17. 17.
    F. Ebrahimi, E. Salari, Mech. Adv. Mater. Struct. 23, 1379 (2015)CrossRefGoogle Scholar
  18. 18.
    L. Li, X. Li, Y. Hu, Int. J. Eng. Sci. 102, 77 (2016)CrossRefGoogle Scholar
  19. 19.
    L. Li, Y. Hu, L. Ling, Physica E 75, 118 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    L. Li, Y. Hu, X. Li, Int. J. Mech. Sci. 115, 135 (2016)CrossRefGoogle Scholar
  21. 21.
    F. Ebrahimi, M.R. Barati, A. Dabbagh, Int. J. Eng. Sci. 107, 169 (2016)CrossRefGoogle Scholar
  22. 22.
    F. Ebrahimi, M.R. Barati, Appl. Phys. A 122, 843 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    F. Ebrahimi, M.R. Barati, Comp. Struct. 159, 433 (2017)CrossRefGoogle Scholar
  24. 24.
    L.L. Ke, Y.S. Wang, Smart Mater. Struct. 21, 025018 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    C. Liu, L.L. Ke, Y.S. Wang, J. Yang, S. Kitipornchai, Comp. Struct. 106, 167 (2013)CrossRefGoogle Scholar
  26. 26.
    S.R. Asemi, A. Farajpour, H.R. Asemi, M. Mohammadi, Physica E 63, 169 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    C. Liu, L.L. Ke, Y.S. Wang, J. Yang, S. Kitipornchai, Int. J. Struct. Stabil. Dyn. 14, 1350067 (2014)CrossRefGoogle Scholar
  28. 28.
    F. Ebrahimi, M.R. Barati, Mech. Adv. Mater. Struct. (2016) DOI:10.1080/15376494.2016.1196795
  29. 29.
    F. Ebrahimi, M.R. Barati, Appl. Phys. A 122, 451 (2016)ADSCrossRefGoogle Scholar
  30. 30.
    F. Ebrahimi, M.R. Barati, J. Vibrat. Control (2016) DOI:10.1177/1077546316646239
  31. 31.
    F. Ebrahimi, M.R. Barati, Int. J. Eng. Sci. 107, 183 (2016)CrossRefGoogle Scholar
  32. 32.
    W. Wang, P. Li, F. Jin, J. Wang, Comp. Struct. 140, 758 (2016)CrossRefGoogle Scholar
  33. 33.
    F. Ebrahimi, M.R. Barati, J. Braz. Soc. Mech. Sci. Eng. (2016) DOI:10.1007/s40430-016-0551-5
  34. 34.
    F. Ebrahimi, M.R. Barati, Eur. Phys. J. Plus 131, 346 (2016)CrossRefGoogle Scholar
  35. 35.
    F. Ebrahimi, M.R. Barati, Eur. Phys. J. Plus 131, 238 (2016)CrossRefGoogle Scholar
  36. 36.
    F. Ebrahimi, M.R. Barati, Smart Mater. Struct. 25, 105014 (2016)ADSCrossRefGoogle Scholar
  37. 37.
    F. Ebrahimi, M.R. Barati, Int. J. Smart Nano Mater. 7, 119 (2016)CrossRefGoogle Scholar
  38. 38.
    F. Ebrahimi, M.R. Barati, Appl. Phys. A 122, 910 (2016)ADSCrossRefGoogle Scholar
  39. 39.
    F. Ebrahimi, E. Salari, Smart Mater. Struct. 24, 125007 (2015)ADSCrossRefGoogle Scholar
  40. 40.
    F. Ebrahimi, M.R. Barati, Adv. Nano Res. 4, 65 (2016)CrossRefGoogle Scholar
  41. 41.
    F. Ebrahimi, M.R. Barati, J. Mech. (2016) DOI:10.1017/jmech.2016.46
  42. 42.
    Z. Zhang, Z. Yan, L. Jiang, J. Appl. Phys. 116, 014307 (2014)ADSCrossRefGoogle Scholar
  43. 43.
    X. Liang, S. Hu, S. Shen, Smart Mater. Struct. 23, 035020 (2014)ADSCrossRefGoogle Scholar
  44. 44.
    Z. Zhang, L. Jiang, J. Appl. Phys. 116, 134308 (2014)ADSCrossRefGoogle Scholar
  45. 45.
    W. Yang, X. Liang, S. Shen, Acta Mech. 226, 3097 (2015)MathSciNetCrossRefGoogle Scholar
  46. 46.
    X. Liang, S. Hu, S. Shen, Smart Mater. Struct. 24, 105012 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, Faculty of EngineeringImam Khomeini International UniversityQazvinIran

Personalised recommendations