Advertisement

Magnetostructural transformation and magnetocaloric effect in Mn-Ni-Sn melt-spun ribbons

  • Yiwen Jiang
  • Zongbin LiEmail author
  • Zhenzhuang Li
  • Yiqiao Yang
  • Bo Yang
  • Yudong Zhang
  • Claude Esling
  • Xiang Zhao
  • Liang Zuo
Regular Article

Abstract.

The martensitic transformation and magnetic properties of Mn50Ni50-x Sn x \((7\le x\le 10)\) melt-spun ribbons were investigated. It is shown that the increase of Sn content results in a nearly linear decrease of martensitic transformation temperatures in the ribbons, with an average rate of 70 K per at % of Sn. In Mn50Ni40Sn10 ribbons, the field-induced reverse martensitic transformation from a weak magnetic martensite to a ferromagnetic austenite was realized due to the strong magnetostructural coupling. Under a field change of 5T, the large magnetic entropy change of 13.7 J kg-1K-1 and the effective refrigerant capacity of 72.9 Jkg-1 were obtained in Mn50Ni40Sn10 ribbons.

References

  1. 1.
    Y. Sutou, Y. Imano, N. Koeda, T. Omori, R. Kainuma, K. Ishida, K. Oikawa, Appl. Phys. Lett. 85, 4358 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    K. Koyama, H. Okada, K. Watanabe, T. Kanomata, R. Kainuma, W. Ito, K. Oikawa, K. Ishida, Appl. Phys. Lett. 89, 182510 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    L. Huang, D.Y. Cong, L. Ma, Z.H. Nie, M.G. Wang, Z.L. Wang, H.L. Suo, Y. Ren, Y.D. Wang, J. Alloys Compd. 647, 1081 (2015)CrossRefGoogle Scholar
  4. 4.
    A. Planes, L. Manosa, M. Acet, J. Phys.: Condens. Matter 21, 233201 (2009)ADSGoogle Scholar
  5. 5.
    J.L. Sánchez Llamazares, T. Sanchez, J.D. Santos, M.J. Pérez, M.L. Sanchez, B. Hernando, Ll. Escoda, J.J. Suñol, R. Varga, Appl. Phys. Lett. 92, 012513 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    L. Huang, D.Y. Cong, H.L. Suo, Y.D. Wang, Appl. Phys. Lett. 104, 132407 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    J.L. Sánchez Llamazares, C. García, B. Hernando, V.M. Prida, D. Baldomir, D. Serantes, J. González, Appl. Phys. A 103, 1125 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    R. Kainuma, Y. Imano, W. Ito, Y. Sutou, H. Morito, S. Okamoto, O. Kitakami, K. Oikawa, A. Fujita, T. Kanomata, K. Ishida, Nature 439, 957 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    Z. Li, C. Jing, H.L. Zhang, D.H. Yu, L. Chen, B.J. Kang, S.X. Cao, J.C. Zhang, J. Appl. Phys. 108, 113908 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    H.E. Karaca, I. Karaman, B. Basaran, Y. Ren, Y.I. Chumlyakov, H.J. Maier, Adv. Funct. Mater. 19, 1 (2009)CrossRefGoogle Scholar
  11. 11.
    Q. Tao, Z.D. Han, J.J. Wang, B. Qian, P. Zhang, X.F. Jiang, D.H. Wang, Y.W. Du, AIP Adv. 2, 042181 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    L. Ma, S.Q. Wang, Y.Z. Li, C.M. Zhen, D.L. Hou, W.H. Wang, J.L. Chen, G.H. Wu, J. Appl. Phys. 112, 083902 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    H.C. Xuan, Y.X. Zheng, S.C. Ma, Q.Q. Cao, D.H. Wang, Y.W. Du, J. Appl. Phys. 108, 103920 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    B. Hernando, J.L. Sánchez Llamazares, J.D. Santos, LI. Escoda, J.J. Suñol, R. Varga, D. Baldomir, D. Serantes, Appl. Phys. Lett. 92, 042504 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    J.L. Sánchez Llamazares, B. Hernando, C. García, J. González, Ll. Escoda, J.J. Suñol, J. Phys. D 42, 045002 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    Z.B. Li, J.L. Sánchez Llamazares, C.F. Sánchez-Valdés, Y.D. Zhang, C. Esling, X. Zhao, L. Zuo, Appl. Phys. Lett. 100, 174102 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    J. Liu, T.G. Woodcock, N. Scheerbaum, O. Gutfleisch, Acta Mater. 57, 4911 (2009)CrossRefGoogle Scholar
  18. 18.
    Z.B. Li, Y.D. Zhang, C.F. Sanchez-Valdes, J.L. Sanchez Llamazares, C. Esling, X. Zhao, L. Zuo, Appl. Phys. Lett. 104, 044101 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    A. Yan, K.H. Müller, O. Gutfleisch, J. Alloys Compd. 450, 18 (2008)CrossRefGoogle Scholar
  20. 20.
    R. Caballero-Flores, V. Franco, A. Conde, L.F. Kiss, J. Appl. Phys. 105, 07A919 (2009)CrossRefGoogle Scholar
  21. 21.
    X. Moya, L. Manosa, A. Planes, T. Krenke, M. Acet, E.F. Wassermann, Mater. Sci. Eng. A 438-440, 911 (2006)CrossRefGoogle Scholar
  22. 22.
    H.F. Tian, J.B. Lu, L. Ma, H.L. Shi, H.X. Yang, G.H. Wu, J.Q. Li, J. Appl. Phys. 112, 033904 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    Z.B. Li, N.F. Zou, C.F. Sánchez-Valdés, J.L. Sánchez Llamazares, B. Yang, Y. Hu, Y. Zhang, C. Esling, X. Zhao, L. Zuo, J. Phys. D 49, 025002 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    J.L. Sánchez Llamazares, H. Flores-Zúñiga, D. Ríos-Jara, C.F. Sánchez-Valdes, T. García-Fernández, C.A. Ross, C. García, J. Appl. Phys. 113, 17A948 (2013)CrossRefGoogle Scholar
  25. 25.
    S.Y. Dong, J.Y. Chen, Z.D. Han, Y. Fang, L. Zhang, C.L. Zhang, B. Qian, X.F. Jiang, Sci. Rep. 6, 25911 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    J. Liu, N. Scheerbaum, J. Lyubina, O. Gutfleisch, Appl. Phys. Lett. 93, 102512 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    P. Czaja, W. Maziarz, J. Przewoznik, C. Kapusta, L. Hawelek, A. Chrobak, P. Drzymała, M. Fitta, A. Kolano-Burian, J. Magn. & Magn. Mater. 358-359, 142 (2014)ADSCrossRefGoogle Scholar
  28. 28.
    I. Babita, S.I. Patil, S. Ram, J. Phys. D 43, 205002 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    J. Sharma, K.G. Suresh, J. Alloys Compd. 620, 329 (2015)CrossRefGoogle Scholar
  30. 30.
    Y. Zhang, Q. Zheng, W. Xia, J. Zhang, J. Du, A. Yan, Scr. Mater. 104, 41 (2015)ADSCrossRefGoogle Scholar
  31. 31.
    N.M. Bruno, C. Yegin, I. Karaman, J.H. Chen, J.H. Ross Jr., J. Liu, J. Li, Acta Mater. 74, 66 (2014)CrossRefGoogle Scholar
  32. 32.
    D.H. Wang, C.L. Zhang, Z.D. Han, H.C. Xuan, B.X. Gu, Y.W. Du, J. Appl. Phys. 103, 033901 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Yiwen Jiang
    • 1
  • Zongbin Li
    • 1
    Email author
  • Zhenzhuang Li
    • 1
  • Yiqiao Yang
    • 1
  • Bo Yang
    • 1
  • Yudong Zhang
    • 2
    • 3
  • Claude Esling
    • 2
    • 3
  • Xiang Zhao
    • 1
  • Liang Zuo
    • 1
    • 4
  1. 1.Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education)School of Material Science and Engineering, Northeastern UniversityShenyangChina
  2. 2.Laboratoire d’Étude des Microstructures et de Mécanique des Matériaux (LEM3)CNRS UMR 7239, Université de LorraineMetzFrance
  3. 3.Laboratory of Excellence on Design of Alloy Metals for low-mAss Structures (DAMAS)Université de LorraineMetzFrance
  4. 4.Taiyuan University of Science and TechnologyTaiyuanChina

Personalised recommendations