Advertisement

Fabrication methods of plasmonic and magnetoplasmonic crystals: a review

  • Foozieh Sohrabi
  • Seyedeh Mehri HamidiEmail author
Review

Abstract.

In recent years, plasmonic crystals have embraced a wide range of applications from medical to optoelectronic ones due to their outstanding and extraordinary properties such as enhanced optical transmission, large field enhancements, collimation of light through a subwavelength apertures and tunable multimode plasmonic resonances. For achieving optimized metallic nanostructures, a great effort is made to propose versatile fabrication methods that support interesting geometries and materials. In this paper, we have made a comprehensive review of fabrication methods of plasmonic crystal and one of its main subgroups entitled “magnetoplasmonic crystals”. The fabrication methods are divided into two main groups of bottom-up and top-down approaches and their weak and strong points, besides their applications are discussed.

References

  1. 1.
    J. Henzie et al., Annu. Rev. Phys. Chem. 60, 147 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    S.A. Maier, Plasmonics: Fundamentals and Applications, 1 edition (Springer, US, 2007)Google Scholar
  3. 3.
    W. Knoll, Annu. Rev. Phys. Chem. 49, 569 (1998)ADSCrossRefGoogle Scholar
  4. 4.
    H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer Verlag, Berlin/Heidelberg/New York, 1988)Google Scholar
  5. 5.
    E. Ozbay, Science 311, 189 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    W.L. Barnes, A. Dereux, T.W. Ebbesen, Nature 424, 824 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    A. Cattoni et al., Nano Lett. 11, 3557 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    E. Kretschmann, H. Raether, Naturforsch. A 23, 2135 (1968)ADSGoogle Scholar
  9. 9.
    A. Otto, Z. Phys. 216, 398 (1968)ADSCrossRefGoogle Scholar
  10. 10.
    J. Homola, Anal. Bioanal. Chem. 377, 528 (2003)CrossRefGoogle Scholar
  11. 11.
    S.M. Hamidi, H. Goudarzi, S. Sadeghi, J. Supercond. Novel Magn. 28, 1565 (2014)CrossRefGoogle Scholar
  12. 12.
    N. Nath, A. Chilkoti, Anal. Chem. 74, 504 (2002)CrossRefGoogle Scholar
  13. 13.
    V. Malyarchuk et al., Opt. Express 13, 5669 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    V. Malyarchuk et al., Appl. Phys. Lett. 90, 203113 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    K.A. Tetz, L. Pang, Y. Fainman, Opt. Lett. 31, 1528 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    M.E. Stewart et al., Proc. Natl. Acad. Sci. U.S.A. 103, 17143 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    W.L. Barnes et al., Phys. Rev. Lett. 92, 107401 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    T.W. Ebbesen et al., Nature 391, 667 (1998)ADSCrossRefGoogle Scholar
  19. 19.
    L.J. Sherry et al., Nano Lett. 5, 2034 (2005)ADSCrossRefGoogle Scholar
  20. 20.
    C.R. Yonzon et al., J. Am. Chem. Soc. 126, 12669 (2004)CrossRefGoogle Scholar
  21. 21.
    R. Gordon et al., Phys. Rev. Lett. 92, 037401 (2004)ADSCrossRefGoogle Scholar
  22. 22.
    J. Henzie, M.H. Lee, T.W. Odom, Nat. Nanotechnol. 2, 549 (2007)ADSCrossRefGoogle Scholar
  23. 23.
    A.J. Haes, R.P. Duyne, Expert Rev. Mol. Diagn. 4, 527 (2004)CrossRefGoogle Scholar
  24. 24.
    C.J. Murphy et al., MRS Bull. 30, 349 (2005)CrossRefGoogle Scholar
  25. 25.
    M.E. Stewart et al., Chem. Rev. 108, 494 (2008)CrossRefGoogle Scholar
  26. 26.
    B. Wiley et al., MRS Bull. 30, 356 (2005)CrossRefGoogle Scholar
  27. 27.
    J. Maria et al., J. Phys. Chem. C 113, 10493 (2009)CrossRefGoogle Scholar
  28. 28.
    S.M. Hamidi, M.M. Tehranchi, J. Supercond. Novel Magn. 25, 2713 (2011)CrossRefGoogle Scholar
  29. 29.
    H.J. Lezec et al., Science 297, 820 (2002)ADSCrossRefGoogle Scholar
  30. 30.
    A.N. Grigorenko et al., Nature 438, 335 (2005)ADSCrossRefGoogle Scholar
  31. 31.
    G. Dolling et al., Opt. Lett. 32, 53 (2007)ADSCrossRefGoogle Scholar
  32. 32.
    J. Dintinger, S. Klein, T.W. Ebbesen, Adv. Mater. 18, 1267 (2006)CrossRefGoogle Scholar
  33. 33.
    J. Yao et al., Adv. Mater. 22, 1102 (2010)CrossRefGoogle Scholar
  34. 34.
    D. Chanda et al., Nat. Commun. 2, 479 (2011)ADSCrossRefGoogle Scholar
  35. 35.
    O. Benson, Nature 480, 193 (2011)ADSCrossRefGoogle Scholar
  36. 36.
    J. Yao et al., Angew. Chem. - Int. Ed. 47, 5013 (2008)CrossRefGoogle Scholar
  37. 37.
    A.J. Baca et al., Appl. Phys. Lett. 94, 243109 (2009)ADSCrossRefGoogle Scholar
  38. 38.
    S.M. Williams et al., J. Phys. Chem. B 108, 11833 (2004)CrossRefGoogle Scholar
  39. 39.
    A.G. Brolo et al., Langmuir 20, 4813 (2004)CrossRefGoogle Scholar
  40. 40.
    A.G. Brolo et al., Nano Lett. 4, 2015 (2004)ADSCrossRefGoogle Scholar
  41. 41.
    M.J. Levene et al., Science 299, 682 (2003)ADSCrossRefGoogle Scholar
  42. 42.
    F. Sohrabi, S.M. Hamidi, Eur. Phys. J. Plus 131, 221 (2016)CrossRefGoogle Scholar
  43. 43.
    C.J. Murphy et al., J. Phys. Chem. B 109, 13857 (2005)CrossRefGoogle Scholar
  44. 44.
    B. Wiley et al., Chemistry 11, 454 (2005)CrossRefGoogle Scholar
  45. 45.
    M.-C. Daniel, D. Astruc, Chem. Rev. 104, 293 (2004)CrossRefGoogle Scholar
  46. 46.
    A. Degiron, T.W. Ebbesen, J. Opt. A 7, S90 (2005)ADSCrossRefGoogle Scholar
  47. 47.
    S. Selcuk et al., Phys. Rev. Lett. 97, 067403 (2006)ADSCrossRefGoogle Scholar
  48. 48.
    K.L. Shuford et al., Appl. Phys. B 84, 11 (2006)ADSCrossRefGoogle Scholar
  49. 49.
    T.J. Kim et al., Opt. Lett. 24, 256 (1999)ADSCrossRefGoogle Scholar
  50. 50.
    J.B. Lassiter et al., Nano Lett. 10, 3184 (2010)ADSCrossRefGoogle Scholar
  51. 51.
    J.A. Fan et al., Science 328, 1135 (2010)ADSCrossRefGoogle Scholar
  52. 52.
    Y. Xia, N.J. Halas, MRS Bull. 30, 338 (2005)CrossRefGoogle Scholar
  53. 53.
    A. Degiron et al., Appl. Phys. Lett. 81, 4327 (2002)ADSCrossRefGoogle Scholar
  54. 54.
    C. Langhammer et al., Nano Lett. 8, 1461 (2008)ADSCrossRefGoogle Scholar
  55. 55.
    S.M. Hamidi et al., J. Supercond. Novel Magn. 29, 771 (2016)CrossRefGoogle Scholar
  56. 56.
    J. Homola, Chem. Rev. 108, 462 (2008)CrossRefGoogle Scholar
  57. 57.
    T. Thio et al., J. Opt. Soc. Am. B 16, 1743 (1999)ADSCrossRefGoogle Scholar
  58. 58.
    M. Najiminaini et al., Opt. Express 18, 22255 (2010)ADSCrossRefGoogle Scholar
  59. 59.
    K.L. van der Molen et al., Appl. Phys. Lett. 85, 4316 (2004)ADSCrossRefGoogle Scholar
  60. 60.
    F. Przybilla et al., J. Opt. A 8, 458 (2006)ADSCrossRefGoogle Scholar
  61. 61.
    F.J. Garcia-Vidal et al., Rev. Mod. Phys. 82, 729 (2010)ADSCrossRefGoogle Scholar
  62. 62.
    G. Armelles et al., Adv. Opt. Mater. 1, 10 (2013)CrossRefGoogle Scholar
  63. 63.
    S.M. Hamidi, M.M. Tehranchi, J. Supercond. Novel Magn. 26, 1585 (2012)CrossRefGoogle Scholar
  64. 64.
    J. Prikulis et al., Nano Lett. 4, 1003 (2004)ADSCrossRefGoogle Scholar
  65. 65.
    G.M. Whitesides, J. Christopher Love, Sci. Am. 285, 38 (2001)CrossRefGoogle Scholar
  66. 66.
    P. Hanarp et al., Colloids Surf. A 214, 23 (2003)CrossRefGoogle Scholar
  67. 67.
    J. Aizpurua et al., Phys. Rev. Lett. 90, 057401 (2003)ADSCrossRefGoogle Scholar
  68. 68.
    C.L. Haynes, R.P. Van Duyne, J. Phys. Chem. B 105, 5599 (2001)CrossRefGoogle Scholar
  69. 69.
    E.M. Hicks et al., J. Phys. Chem. C 111, 4116 (2007)CrossRefGoogle Scholar
  70. 70.
    A.J. Haes et al., J. Phys. Chem. B 109, 11158 (2005)CrossRefGoogle Scholar
  71. 71.
    C.-J. Huang et al., J. Colloid Interface Sci. 303, 430 (2006)CrossRefGoogle Scholar
  72. 72.
    M. Starowicz, B. Stypuła, J. Banaś, Electrochem. Commun. 8, 227 (2006)CrossRefGoogle Scholar
  73. 73.
    W. Plieth et al., Surface Sci. 597, 119 (2005)ADSCrossRefGoogle Scholar
  74. 74.
    T. Vosgröne et al., Surface Sci. 597, 102 (2005)ADSCrossRefGoogle Scholar
  75. 75.
    W. Lee et al., Angew. Chem. Int. Ed. 44, 6050 (2005)CrossRefGoogle Scholar
  76. 76.
    C.-J. Huang et al., J. Colloid Interface Sci. 306, 56 (2007)CrossRefGoogle Scholar
  77. 77.
    S.M. Hamidi, Fabrication and Characterization of a Microwave Filter based on a Magnetic Photonic Bandgap Material, in 21st Iranian Conference on Optics and Photonics and and 7th Iranian Conference on Photonic Engineering (Shahid Beheshti University, Tehran, Iran, 2015) pp. 301--304Google Scholar
  78. 78.
    S.M. Hamidi et al., J. Magn. Magn. Mater. 374, 139 (2015)ADSCrossRefGoogle Scholar
  79. 79.
    Z.S. Pillai, P.V. Kamat, J. Phys. Chem. B 108, 945 (2004)CrossRefGoogle Scholar
  80. 80.
    F. Kim, J.H. Song, P. Yang, J. Am. Chem. Soc. 124, 14316 (2002)CrossRefGoogle Scholar
  81. 81.
    P. He, X. Zhu, Mater. Res. Bull. 42, 1310 (2007)CrossRefGoogle Scholar
  82. 82.
    M. Sakamoto et al., Adv. Funct. Mater. 17, 857 (2007)CrossRefGoogle Scholar
  83. 83.
    K.L. McGilvray et al., J. Am. Chem. Soc. 128, 15980 (2006)CrossRefGoogle Scholar
  84. 84.
    J.-E. Park, M. Atobe, T. Fuchigami, Ultrason. Sonochem. 13, 237 (2006)CrossRefGoogle Scholar
  85. 85.
    C.-H. Su, P.-L. Wu, C.-S. Yeh, J. Phys. Chem. B 107, 14240 (2003)CrossRefGoogle Scholar
  86. 86.
    L.-P. Jiang et al., Inorganic Chem. Commun. 7, 506 (2004)CrossRefGoogle Scholar
  87. 87.
    Y. Sun et al., Chem. Mater. 19, 2065 (2007)CrossRefGoogle Scholar
  88. 88.
    B. Rodríguez-González, P. Mulvaney, M. Liz-Marzán Luis Z. Phys. Chem.4152007CrossRefGoogle Scholar
  89. 89.
    A. Pal, S. Shah, S. Devi, Physicochem. Eng. Aspects 302, 483 (2007)CrossRefGoogle Scholar
  90. 90.
    N.N. Kariuki et al., Langmuir 20, 11240 (2004)CrossRefGoogle Scholar
  91. 91.
    N. Toshima, T. Yonezawa, New J. Chem. 22, 1179 (1998)CrossRefGoogle Scholar
  92. 92.
    B. Wiley et al., Nano Lett. 4, 1733 (2004)ADSCrossRefGoogle Scholar
  93. 93.
    D.D. Evanoff, G. Chumanov, J. Phys. Chem. B 108, 13948 (2004)CrossRefGoogle Scholar
  94. 94.
    J.H. Youk et al., Langmuir 18, 2455 (2002)CrossRefGoogle Scholar
  95. 95.
    S. Xiangyang et al., Nanotechnology 17, 1072 (2006)CrossRefGoogle Scholar
  96. 96.
    I. Srnová-Sloufová et al., Langmuir 20, 3407 (2004)CrossRefGoogle Scholar
  97. 97.
    H. Yuan et al., Chem. Mater. 19, 1592 (2007)CrossRefGoogle Scholar
  98. 98.
    A. Roucoux, J. Schulz, H. Patin, Chem. Rev. 102, 3757 (2002)CrossRefGoogle Scholar
  99. 99.
    G.B. Khomutov, Y.A. Koksharov, Adv. Colloid Interface Sci. 122, 119 (2006)CrossRefGoogle Scholar
  100. 100.
    M. Geneviève et al., Microelectron. Engin. 84, 1710 (2007)CrossRefGoogle Scholar
  101. 101.
    L.S. Ott, R.G. Finke, Inorg. Chem. 45, 8382 (2006)CrossRefGoogle Scholar
  102. 102.
    M. Anand et al., J. Phys. Chem. B 110, 14693 (2006)CrossRefGoogle Scholar
  103. 103.
    R.J. Hunter, Foundations of Colloid Science (Oxford University Press, 2001)Google Scholar
  104. 104.
    M.J. Hostetler et al., Langmuir 14, 17 (1998)CrossRefGoogle Scholar
  105. 105.
    G. Frens, Nat. Phys. Sci. 241, 20 (1973)ADSCrossRefGoogle Scholar
  106. 106.
    J.A. Jacob et al., Colloids Surf. A 301, 329 (2007)CrossRefGoogle Scholar
  107. 107.
    B.J. Wiley et al., J. Phys. Chem. B 110, 15666 (2006)CrossRefGoogle Scholar
  108. 108.
    H.M. Chen et al., J. Phys. Chem. C 111, 5909 (2007)CrossRefGoogle Scholar
  109. 109.
    L.M. Liz-Marzán, Langmuir 22, 32 (2006)CrossRefGoogle Scholar
  110. 110.
    M.P. Mallin, C.J. Murphy, Nano Lett. 2, 1235 (2002)ADSCrossRefGoogle Scholar
  111. 111.
    A. Steinbrück et al., Plasmonics 1, 79 (2006)CrossRefGoogle Scholar
  112. 112.
    C. Loo et al., Technol. Cancer Res. Treat. 3, 33 (2004)ADSCrossRefGoogle Scholar
  113. 113.
    P.R. Selvakannan, M. Sastry, Chem. Commun., 1684 (2005) DOI:10.1039/B418566H
  114. 114.
    X. Lu et al., J. Am. Chem. Soc. 129, 1733 (2007)CrossRefGoogle Scholar
  115. 115.
    J. Henzie, E.-S. Kwak, T.W. Odom, Nano Lett. 5, 1199 (2005)ADSCrossRefGoogle Scholar
  116. 116.
    Y. Min et al., Nat. Mater. 7, 527 (2008)ADSCrossRefGoogle Scholar
  117. 117.
    Joe B. Schlenoff, Gero Decher (Editor), Multilayer Thin Films: Sequential Assembly of Nanocomposite Materials, 2nd edition (Wiley-VCH, 2012)Google Scholar
  118. 118.
    R.M. Erb et al., Nature 457, 999 (2009)ADSCrossRefGoogle Scholar
  119. 119.
    A.R. Tao et al., Nano Lett. 8, 4033 (2008)ADSCrossRefGoogle Scholar
  120. 120.
    H.J. Fan, P. Werner, M. Zacharias, Small 2, 700 (2006)CrossRefGoogle Scholar
  121. 121.
    T. Sünner et al., Optics Lett. 33, 1759 (2008)ADSCrossRefGoogle Scholar
  122. 122.
    A. Mohan et al., Nat. Photon. 4, 302 (2010)CrossRefGoogle Scholar
  123. 123.
    A.S. Urban et al., Nano Lett. 10, 4794 (2010)ADSCrossRefGoogle Scholar
  124. 124.
    S. Nedev et al., Nano Lett. 11, 5066 (2011)ADSCrossRefGoogle Scholar
  125. 125.
    R.R. Agayan et al., Appl. Opt. 41, 2318 (2002)ADSCrossRefGoogle Scholar
  126. 126.
    J.R. Arias-González, M. Nieto-Vesperinas, J. Opt. Soc. Am. A 20, 1201 (2003)ADSCrossRefGoogle Scholar
  127. 127.
    A.S. Urban et al., ACS Nano 5, 3585 (2011)CrossRefGoogle Scholar
  128. 128.
    K. Hennessy et al., Nature 445, 896 (2007)ADSCrossRefGoogle Scholar
  129. 129.
    G. Binnig et al., Phys. Rev. Lett. 49, 57 (1982)ADSCrossRefGoogle Scholar
  130. 130.
    G. Binnig, C.F. Quate, C. Gerber, Phys. Rev. Lett. 56, 930 (1986)ADSCrossRefGoogle Scholar
  131. 131.
    D. Wang, A New AFM-Based Lithography Method: Thermochemical Nanolithography, in Scanning Probe Microscopy in Nanoscience and Nanotechnology, edited by B. Bhushan (Springer, Berlin, Heidelberg, 2010) pp. 795--811Google Scholar
  132. 132.
    R. Szoszkiewicz, E. Riedo, New AFM Developments to Study Elasticity and Adhesion at the Nanoscale, in Applied Scanning Probe Methods V: Scanning Probe Microscopy Techniques, edited by B. Bhushan, S. Kawata, H. Fuchs (Springer, Berlin, Heidelberg, 2007) pp. 269--286Google Scholar
  133. 133.
    D.M. Eigler, E.K. Schweizer, Nature 344, 524 (1990)ADSCrossRefGoogle Scholar
  134. 134.
    S.K. Kufer et al., Science 319, 594 (2008)CrossRefGoogle Scholar
  135. 135.
    L. Tong, T. Zhu, Z. Liu, Appl. Phys. Lett. 92, 023109 (2008)ADSCrossRefGoogle Scholar
  136. 136.
    S. Hsieh et al., J. Phys. Chem. B 106, 231 (2002)CrossRefGoogle Scholar
  137. 137.
    T. Junno et al., Appl. Phys. Lett. 66, 3627 (1995)ADSCrossRefGoogle Scholar
  138. 138.
    T. Claes, S. Lars, Nanotechnology 13, 108 (2002)CrossRefGoogle Scholar
  139. 139.
    E. Harel et al., Nano Lett. 5, 2624 (2005)ADSCrossRefGoogle Scholar
  140. 140.
    K. Salaita, Y. Wang, C.A. Mirkin, Nat. Nanotechnol. 2, 145 (2007)ADSCrossRefGoogle Scholar
  141. 141.
    B.D. Gates et al., Chem. Rev. 105, 1171 (2005)CrossRefGoogle Scholar
  142. 142.
    A.A. Tseng, A. Notargiacomo, T.P. Chen, J. Vacuum Sci. Technol. B 23, 877 (2005)CrossRefGoogle Scholar
  143. 143.
    S. Krämer, R.R. Fuierer, C.B. Gorman, Chem. Rev. 103, 4367 (2003)CrossRefGoogle Scholar
  144. 144.
    M. Lucas, E. Riedo, Rev. Sci. Instrum. 83, 061101 (2012)ADSCrossRefGoogle Scholar
  145. 145.
    R. Garcia, A.W. Knoll, E. Riedo, Nat. Nano. 9, 577 (2014)CrossRefGoogle Scholar
  146. 146.
    A. Laraoui et al., Nat. Commun. 6, 8954 (2015)ADSCrossRefGoogle Scholar
  147. 147.
    E. Albisetti et al., Nanotechnology 27, 315302 (2016)ADSCrossRefGoogle Scholar
  148. 148.
    E. Albisetti et al., Nat. Nanotechnol. 11, 545 (2016)ADSCrossRefGoogle Scholar
  149. 149.
    Y. Wang et al., Appl. Phys. Lett. 90, 133102 (2007)ADSCrossRefGoogle Scholar
  150. 150.
    K.-B. Lee et al., Nano Lett. 4, 1869 (2004)ADSCrossRefGoogle Scholar
  151. 151.
    R.D. Piner et al., Science 283, 661 (1999)CrossRefGoogle Scholar
  152. 152.
    S. Hong, J. Zhu, C.A. Mirkin, Science 286, 523 (1999)CrossRefGoogle Scholar
  153. 153.
    Y. Zhang et al., Langmuir 20, 962 (2004)CrossRefGoogle Scholar
  154. 154.
    B.J. Vesper et al., J. Am. Chem. Soc. 126, 16653 (2004)CrossRefGoogle Scholar
  155. 155.
    Y. Zhang et al., Nano Lett. 2, 1389 (2002)ADSCrossRefGoogle Scholar
  156. 156.
    C.M. Bruinink et al., Chemistry 11, 3988 (2005)CrossRefGoogle Scholar
  157. 157.
    T. Auletta et al., Angew. Chem. 43, 369 (2004)CrossRefGoogle Scholar
  158. 158.
    H. Zhou et al., Appl. Surface Sci. 236, 18 (2004)ADSCrossRefGoogle Scholar
  159. 159.
    S.E. Kooi et al., Adv. Mater. 16, 1013 (2004)CrossRefGoogle Scholar
  160. 160.
    A. Ivanisevic, K.V. McCumber, C.A. Mirkin, J. Am. Chem. Soc. 124, 11997 (2002)CrossRefGoogle Scholar
  161. 161.
    M. Su et al., Appl. Phys. Lett. 84, 4200 (2004)ADSCrossRefGoogle Scholar
  162. 162.
    L.M. Demers et al., Science 296, 1836 (2002)ADSCrossRefGoogle Scholar
  163. 163.
    S.-W. Chung et al., Small 1, 64 (2005)CrossRefGoogle Scholar
  164. 164.
    K.-B. Lee, J.-H. Lim, C.A. Mirkin, J. Am. Chem. Soc. 125, 5588 (2003)CrossRefGoogle Scholar
  165. 165.
    J.H. Lim et al., Angew. Chem. 42, 2309 (2003)CrossRefGoogle Scholar
  166. 166.
    K.-B. Lee et al., Science 295, 1702 (2002)ADSCrossRefGoogle Scholar
  167. 167.
    M. Lee et al., Proteomics 6, 1094 (2006)CrossRefGoogle Scholar
  168. 168.
    Y. Cho, A. Ivanisevic, J. Phys. Chem. B 109, 6225 (2005)CrossRefGoogle Scholar
  169. 169.
    Y. Cho, A. Ivanisevic, J. Phys. Chem. B 108, 15223 (2004)CrossRefGoogle Scholar
  170. 170.
    H. Jiang, S.I. Stupp, Langmuir 21, 5242 (2005)CrossRefGoogle Scholar
  171. 171.
    G. Gundiah et al., Appl. Phys. Lett. 84, 5341 (2004)ADSCrossRefGoogle Scholar
  172. 172.
    L. Ding et al., J. Phys. Chem. B 109, 22337 (2005)CrossRefGoogle Scholar
  173. 173.
    J. Li et al., Chem. Mater. 16, 1633 (2004)CrossRefGoogle Scholar
  174. 174.
    L. Fu et al., Nano Lett. 3, 757 (2003)ADSCrossRefGoogle Scholar
  175. 175.
    M. Su et al., J. Am. Chem. Soc. 124, 1560 (2002)CrossRefGoogle Scholar
  176. 176.
    G. Agarwal, R.R. Naik, M.O. Stone, J. Am. Chem. Soc. 125, 7408 (2003)CrossRefGoogle Scholar
  177. 177.
    X. Liu et al., Science 307, 1763 (2005)ADSCrossRefGoogle Scholar
  178. 178.
    G. Zhang, D. Wang, Chem. J. 4, 236 (2009)Google Scholar
  179. 179.
    T. Rindzevicius et al., Nano Lett. 5, 2335 (2005)ADSCrossRefGoogle Scholar
  180. 180.
    P. Hanarp, M. Käll, D.S. Sutherland, J. Phys. Chem. B 107, 5768 (2003)CrossRefGoogle Scholar
  181. 181.
    H. Fredriksson et al., Adv. Mater. 19, 4297 (2007)CrossRefGoogle Scholar
  182. 182.
    M.V. Sapozhnikov et al., Appl. Phys. Lett. 96, 122507 (2010)ADSCrossRefGoogle Scholar
  183. 183.
    S.Y. Lee et al., Anal. Chem. 83, 9174 (2011)CrossRefGoogle Scholar
  184. 184.
    J.F. Torrado et al., Appl. Phys. Lett. 99, 193109 (2011)ADSCrossRefGoogle Scholar
  185. 185.
    S.M. Yang et al., Small 2, 458 (2006)CrossRefGoogle Scholar
  186. 186.
    K. Lodewijks et al., Nano Lett. 14, 7207 (2014)ADSCrossRefGoogle Scholar
  187. 187.
    N. Maccaferri et al., Nat. Commun. 6, 6150 (2015)ADSCrossRefGoogle Scholar
  188. 188.
    J.C. Hulteen et al., J. Phys. Chem. B 103, 3854 (1999)CrossRefGoogle Scholar
  189. 189.
    J.C. Hulteen, R.P. Van Duyne, J. Vacuum Sci. Technol. A 13, 1553 (1995)ADSCrossRefGoogle Scholar
  190. 190.
    A. Kosiorek et al., Nano Lett. 4, 1359 (2004)ADSCrossRefGoogle Scholar
  191. 191.
    A. Kosiorek et al., Small 1, 439 (2005)CrossRefGoogle Scholar
  192. 192.
    C.L. Haynes et al., J. Phys. Chem. B 106, 1898 (2002)CrossRefGoogle Scholar
  193. 193.
    T.R. Jensen et al., J. Phys. Chem. B 104, 10549 (2000)CrossRefGoogle Scholar
  194. 194.
    X. Zhang et al., Nano Lett. 5, 1503 (2005)ADSCrossRefGoogle Scholar
  195. 195.
    S.H. Lee et al., Langmuir 25, 13685 (2009)CrossRefGoogle Scholar
  196. 196.
    E.T. Papaioannou et al., Phys. Rev. B 81, 054424 (2010)ADSCrossRefGoogle Scholar
  197. 197.
    J.F. Torrado et al., Phys. Status Solidi (RRL) 4, 271 (2010)ADSCrossRefGoogle Scholar
  198. 198.
    A.A. Grunin et al., Proc. SPIE 7353, 73530F (2009)CrossRefGoogle Scholar
  199. 199.
    E.T. Papaioannou et al., Opt. Express 19, 23867 (2011)ADSCrossRefGoogle Scholar
  200. 200.
    H. Fang et al., Appl. Phys. Lett. 106, 153104 (2015)ADSCrossRefGoogle Scholar
  201. 201.
    M. Rollinger et al., Nano Lett. 16, 2432 (2016)ADSCrossRefGoogle Scholar
  202. 202.
    G. Ctistis et al., Nano Lett. 9, 1 (2009)ADSCrossRefGoogle Scholar
  203. 203.
    Z. Liu et al., Appl. Phys. Lett. 95, 032502 (2009)ADSCrossRefGoogle Scholar
  204. 204.
    I. Razdolski et al., Phys. Rev. B 88, 075436 (2013)ADSCrossRefGoogle Scholar
  205. 205.
    M.V. Sapozhnikov et al., Opt. Lett. 36, 4197 (2011)ADSCrossRefGoogle Scholar
  206. 206.
    B. Caballero, A. García-Martín, J.C. Cuevas, ACS Photon. 3, 203 (2016)CrossRefGoogle Scholar
  207. 207.
    A. De Leebeeck et al., Anal. Chem. 79, 4094 (2007)CrossRefGoogle Scholar
  208. 208.
    H. Gao et al., Nano Lett. 10, 2549 (2010)ADSCrossRefGoogle Scholar
  209. 209.
    Y. Kenji, N. Hideo, Jpn. J. Appl. Phys. 43, 3767 (2004)CrossRefGoogle Scholar
  210. 210.
    M.J. Word, I. Adesida, P.R. Berger, J. Vacuum Sci. Technol. B 21, L12 (2003)CrossRefGoogle Scholar
  211. 211.
    M. Isaacson, A. Muray, J. Vacuum Sci. Technol. 19, 1117 (1981)ADSCrossRefGoogle Scholar
  212. 212.
    W.D. Hinsberg, Extendibility of chemically amplified resists: another brick wall? in Proc. SPIE 5039, Advances in Resist Technology and Processing XX (SPIE, 2003) DOI:10.1117/12.487739
  213. 213.
    E.M. Hicks et al., Nano Lett. 5, 1065 (2005)ADSCrossRefGoogle Scholar
  214. 214.
    C.L. Haynes et al., J. Phys. Chem. B 107, 7337 (2003)CrossRefGoogle Scholar
  215. 215.
    R.G. Manuel, J. Phys. D: Appl. Phys. 47, 213001 (2014)CrossRefGoogle Scholar
  216. 216.
    A.O. Adeyeye, N. Singh, J. Phys. D: Appl. Phys. 41, 153001 (2008)ADSCrossRefGoogle Scholar
  217. 217.
    M. Najiminaini et al., Plasmonics 8, 217 (2013)CrossRefGoogle Scholar
  218. 218.
    A. Sarella et al., Adv. Mater. 26, 2384 (2014)CrossRefGoogle Scholar
  219. 219.
    M. Kataja et al., Opt. Express 24, 3652 (2016)ADSCrossRefGoogle Scholar
  220. 220.
    N. Maccaferri et al., Nano Lett. 16, 2533 (2016)ADSCrossRefGoogle Scholar
  221. 221.
    J.M.D. Teresa et al., J. Phys. D: Appl. Phys. 49, 243003 (2016)ADSCrossRefGoogle Scholar
  222. 222.
    M. Huth et al., Beilstein J. Nanotechnol. 3, 597 (2012)CrossRefGoogle Scholar
  223. 223.
    W.F. van Dorp, C.W. Hagen, J. Appl. Phys. 104, 081301 (2008)ADSCrossRefGoogle Scholar
  224. 224.
    P. Vavassori et al., Small 12, 1013 (2016)CrossRefGoogle Scholar
  225. 225.
    I. Utke, P. Hoffmann, J. Melngailis, J. Vacuum Sci. Technol. B 26, 1197 (2008)ADSCrossRefGoogle Scholar
  226. 226.
    S.J. Randolph, J.D. Fowlkes, P.D. Rack, Crit. Rev. Solid State Mater. Sci. 31, 55 (2006)ADSCrossRefGoogle Scholar
  227. 227.
    R.L. Kubena et al., J. Vacuum Sci. Technol. B 9, 3079 (1991)ADSCrossRefGoogle Scholar
  228. 228.
    J. Gierak et al., J. Vacuum Sci. Technol. B 15, 2373 (1997)ADSCrossRefGoogle Scholar
  229. 229.
    C.-K. Chang et al., Appl. Phys. Lett. 90, 061113 (2007)ADSCrossRefGoogle Scholar
  230. 230.
    F. Przybilla, C. Genet, T.W. Ebbesen, Appl. Phys. Lett. 89, 121115 (2006)ADSCrossRefGoogle Scholar
  231. 231.
    M.U. González et al., Phys. Rev. B 73, 155416 (2006)ADSCrossRefGoogle Scholar
  232. 232.
    F. Lopez-Tejeira et al., Nat. Phys. 3, 324 (2007)CrossRefGoogle Scholar
  233. 233.
    S.I. Bozhevolnyi et al., Nature 440, 508 (2006)ADSCrossRefGoogle Scholar
  234. 234.
    V.S. Volkov et al., Nano Lett. 7, 880 (2007)ADSCrossRefGoogle Scholar
  235. 235.
    G.A. Wurtz et al., New J. Phys. 10, 105012 (2008)ADSCrossRefGoogle Scholar
  236. 236.
    D.E. Grupp et al., Adv. Mater. 11, 860 (1999)CrossRefGoogle Scholar
  237. 237.
    E.-S. Kwak et al., Nano Lett. 5, 1963 (2005)ADSCrossRefGoogle Scholar
  238. 238.
    W. Kuang et al., Opt. Commun. 283, 4090 (2010)ADSCrossRefGoogle Scholar
  239. 239.
    X. Wei et al., Appl. Phys. Lett. 97, 011904 (2010)ADSCrossRefGoogle Scholar
  240. 240.
    L. Chen et al., J. Opt. 17, 085001 (2015)ADSCrossRefGoogle Scholar
  241. 241.
    Y.S. Do et al., Adv. Opt. Mater. 1, 133 (2013)ADSCrossRefGoogle Scholar
  242. 242.
    Y. Shen et al., Nat. Commun. 4, 2381 (2013)ADSGoogle Scholar
  243. 243.
    Y. Yokota et al., J. Photochem. Photobiol. A: Chem. 207, 126 (2009)CrossRefGoogle Scholar
  244. 244.
    W.B. Xia et al., Optics Expr. 22, 1359 (2014)ADSCrossRefGoogle Scholar
  245. 245.
    L.J. Heyderman et al., Appl. Phys. Lett. 85, 4989 (2004)ADSCrossRefGoogle Scholar
  246. 246.
    E.F. Wassermann et al., J. Appl. Phys. 83, 1753 (1998)ADSCrossRefGoogle Scholar
  247. 247.
    M. Farhoud et al., J. Vacuum Sci. Technol. B 17, 3182 (1999)ADSCrossRefGoogle Scholar
  248. 248.
    M. Zheng et al., Appl. Phys. Lett. 79, 2606 (2001)ADSCrossRefGoogle Scholar
  249. 249.
    B. Vögeli et al., J. Vacuum Sci. Technol. B 19, 2753 (2001)ADSCrossRefGoogle Scholar
  250. 250.
    S. Moralejo et al., J. Magn. & Magn. Mater. 316, e44 (2007)ADSCrossRefGoogle Scholar
  251. 251.
    T.W. Odom et al., J. Am. Chem. Soc. 124, 12112 (2002)CrossRefGoogle Scholar
  252. 252.
    E.C. Greyson, Y. Babayan, T.W. Odom, Adv. Mater. 16, 1348 (2004)CrossRefGoogle Scholar
  253. 253.
    M.H. Lee et al., Small 3, 2029 (2007)CrossRefGoogle Scholar
  254. 254.
    S. Navab, S. Goolaup, A.O. Adeyeye, Nanotechnology 15, 1539 (2004)ADSCrossRefGoogle Scholar
  255. 255.
    M.D. Levenson, N.S. Viswanathan, R.A. Simpson, IEEE Trans. Electr. Dev. 29, 1828 (1982)ADSCrossRefGoogle Scholar
  256. 256.
    K.K. Toh et al., Proc. SPIE 1496, 27 (1991)ADSCrossRefGoogle Scholar
  257. 257.
    B.W. Smith et al., Microelectr. Eng. 35, 201 (1997)CrossRefGoogle Scholar
  258. 258.
    Y. Saito et al., Proc. SPIE 2254, 60 (1994)ADSCrossRefGoogle Scholar
  259. 259.
    R.L. Gordon, C.A. Mack, J.S. Petersen, Proc. SPIE 3546, 606 (1998)ADSCrossRefGoogle Scholar
  260. 260.
    N. Singh et al., J. Vacuum Sci. Technol. B 24, 2326 (2006)ADSCrossRefGoogle Scholar
  261. 261.
    L. Lifeng, J. Opt. A 5, 345 (2003)ADSCrossRefGoogle Scholar
  262. 262.
    I. Puscasu et al., J. Appl. Phys. 98, 013531 (2005)ADSCrossRefGoogle Scholar
  263. 263.
    H.K. Fu et al., J. Appl. Phys. 105, 033505 (2009)ADSCrossRefGoogle Scholar
  264. 264.
    N. Maccaferri et al., ACS Photon. 2, 1769 (2015)CrossRefGoogle Scholar
  265. 265.
    L.Y. Wu, B.M. Ross, L.P. Lee, Nano Lett. 9, 1956 (2009)ADSCrossRefGoogle Scholar
  266. 266.
    D.B. Weibel, W.R. Diluzio, G.M. Whitesides, Nat. Rev. Microbiol. 5, 209 (2007)CrossRefGoogle Scholar
  267. 267.
    J.A. Rogers, R.G. Nuzzo, Mater. Today 8, 50 (2005)CrossRefGoogle Scholar
  268. 268.
    Y. Xia, G.M. Whitesides, Annu. Rev. Mater. Sci. 28, 153 (1998)ADSCrossRefGoogle Scholar
  269. 269.
    B.D. Gates et al., Annu. Rev. Mater. Res. 34, 339 (2004)ADSCrossRefGoogle Scholar
  270. 270.
    H. Gao, J. Henzie, T.W. Odom, Nano Lett. 6, 2104 (2006)ADSCrossRefGoogle Scholar
  271. 271.
    J. Henzie et al., Acc. Chem. Res. 39, 249 (2006)CrossRefGoogle Scholar
  272. 272.
    H.I. Smith et al., J. Vacuum Sci. Technol. B 9, 2992 (1991)ADSCrossRefGoogle Scholar
  273. 273.
    H. Gao et al., Opt. Express 17, 2334 (2009)ADSCrossRefGoogle Scholar
  274. 274.
    M. Sun et al., J. Appl. Phys. 100, 024320 (2006)ADSCrossRefGoogle Scholar
  275. 275.
    J. Henzie et al., J. Phys. Chem. B 110, 14028 (2006)CrossRefGoogle Scholar
  276. 276.
    Y.-L. Loo et al., J. Am. Chem. Soc. 124, 7654 (2002)CrossRefGoogle Scholar
  277. 277.
    Y.-L. Loo et al., Appl. Phys. Lett. 81, 562 (2002)ADSCrossRefGoogle Scholar
  278. 278.
    D. Lin et al., Adv. Mater. 24, 6088 (2012)CrossRefGoogle Scholar
  279. 279.
    Y.-L. Loo et al., Nano Lett. 3, 913 (2003)ADSCrossRefGoogle Scholar
  280. 280.
    N.A. Abu Hatab, J.M. Oran, M.J. Sepaniak, ACS Nano 2, 377 (2008)CrossRefGoogle Scholar
  281. 281.
    D. Chanda et al., Nat. Nanotechnol. 6, 402 (2011)ADSCrossRefGoogle Scholar
  282. 282.
    V.N. Truskett, M.P. Watts, Trends Biotechnol. 24, 312 (2006)CrossRefGoogle Scholar
  283. 283.
    S.Y. Chou et al., J. Vacuum Sci. Technol. B 15, 2897 (1997)ADSCrossRefGoogle Scholar
  284. 284.
    M.D. Stewart et al., J. Micro/Nanolithogr., MEMS, MOEMS 4, 011002 (2005)ADSCrossRefGoogle Scholar
  285. 285.
    F. Hua et al., Nano Lett. 4, 2467 (2004)ADSCrossRefGoogle Scholar
  286. 286.
    H. Schmid, B. Michel, Macromolecules 33, 3042 (2000)ADSCrossRefGoogle Scholar
  287. 287.
    T.W. Odom et al., Langmuir 18, 5314 (2002)CrossRefGoogle Scholar
  288. 288.
    M.E. Stewart et al., J. Nanoeng. Nanosyst. 220, 81 (2006)Google Scholar
  289. 289.
    M. Diwekar et al., Appl. Phys. Lett. 84, 3112 (2004)ADSCrossRefGoogle Scholar
  290. 290.
    M. Natali et al., J. Vacuum Sci. Technol. B 19, 2779 (2001)ADSCrossRefGoogle Scholar
  291. 291.
    J. Moritz et al., IEEE Trans. Magn. 38, 1731 (2002)ADSCrossRefGoogle Scholar
  292. 292.
    W. Hu et al., J. Vacuum Sci. Technol. A 25, 1294 (2007)ADSCrossRefGoogle Scholar
  293. 293.
    T.T. Truong et al., Nanotechnology 20, 434011 (2009)ADSCrossRefGoogle Scholar
  294. 294.
    T.T. Truong et al., Langmuir 23, 2898 (2007)CrossRefGoogle Scholar
  295. 295.
    J.P. Rolland et al., J. Am. Chem. Soc. 126, 2322 (2004)CrossRefGoogle Scholar
  296. 296.
    G.D. Rothrock et al., Proc. SPIE 6152, 61523F (2006)CrossRefGoogle Scholar
  297. 297.
    J.P. Rolland et al., Angew. Chem. Int. Ed. 43, 5796 (2004)CrossRefGoogle Scholar
  298. 298.
    E. Delamarche et al., Adv. Mater. 9, 741 (1997)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Magneto-plasmonic Lab, Laser and Plasma Research InstituteShahid Beheshti UniversityTehranIran

Personalised recommendations