Advertisement

Obtaining gravitational waves from inspiral binary systems using LIGO data

  • Javier M. AntelisEmail author
  • Claudia Moreno
Review

Abstract.

The discovery of the astrophysical events GW150926 and GW151226 has experimentally confirmed the existence of gravitational waves (GW) and has demonstrated the existence of binary stellar-mass black hole systems. This finding marks the beginning of a new era that will reveal unexpected features of our universe. This work presents a basic insight to the fundamental theory of GW emitted by inspiral binary systems and describes the scientific and technological efforts developed to measure these waves using the interferometer-based detector called LIGO. Subsequently, the work presents a comprehensive data analysis methodology based on the matched filter algorithm, which aims to recovery GW signals emitted by inspiral binary systems of astrophysical sources. This algorithm was evaluated with freely available LIGO data containing injected GW waveforms. Results of the experiments performed to assess detection accuracy showed the recovery of 85% of the injected GW.

References

  1. 1.
    M. Holst, O. Sarbach, M. Tiglio, M. Vallisneri, Bull. Am. Math. Soc. 53, 513 (2016)CrossRefGoogle Scholar
  2. 2.
    M.C. Miller, Gen. Relativ. Gravit. 48, 95 (2016)ADSCrossRefGoogle Scholar
  3. 3.
    A. Einstein, Preuss. Akad. Wiss. Berlin, Sitzungsber. 1915, 778 (1915)Google Scholar
  4. 4.
    A. Einstein, Preuss. Akad. Wiss. Berlin, Sitzungsber. 1915, 844 (1915)Google Scholar
  5. 5.
    R. Hulse, J. Taylor, Astrophys. J. 195, L51 (1975)ADSCrossRefGoogle Scholar
  6. 6.
    J. Taylor, J. Weisber, arXiv:astro-ph/0407149
  7. 7.
    J. Taylor, J. Weisberg, Astrophys. J. 253, 908 (1982)ADSCrossRefGoogle Scholar
  8. 8.
    T. Damour, J. Taylor, Phys. Rev. D 45, 1840 (1992)ADSCrossRefGoogle Scholar
  9. 9.
    J. Weber, Phys. Rev. 117, 336 (1960)ADSCrossRefGoogle Scholar
  10. 10.
    J. Weber, General Relativity and Gravitational Waves (Wiley Interscience, United States, 1961)Google Scholar
  11. 11.
    B.P. Abbott et al., Rep. Prog. Phys. 72, 076901 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    T. Accadia et al., J. Instrum. 7, P03012 (2012)CrossRefGoogle Scholar
  13. 13.
    C. Affeldt et al., Class. Quantum Grav. 31, 224002 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    The LIGO Scientific Collaboration (J. Aasi et al.), Class. Quantum Grav. 32, 074001 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    B.P. Abbott et al., Phys. Rev. Lett. 116, 061102 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    B.P. Abbott et al., Phys. Rev. Lett. 116, 241103 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    B. Allen, W.G. Anderson, P.R. Brady, D.A. Brown, J.D.E. Creighton, Phys. Rev. D 85, 122006 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation (Academic Press, San Francisco, 1973)Google Scholar
  19. 19.
    S.M. Carroll, Spacetime and Geometry: An Introduction to General Relativity (Addison Wesley, San Francisco, 2004)Google Scholar
  20. 20.
    S.L. Shapiro, S.A. Teukolsky, Black Holes, White Dwarfs, and Neutron Star: The Physics of Compact Objects (Wiley-Interscience, United States, 1983)Google Scholar
  21. 21.
    D. Kodwani, arXiv:1605.05399 (2016)
  22. 22.
    S.E. Gossan et al., Phys. Rev. D 93, 042002 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    A. Liddle, An Introduction to Modern Cosmology (Wiley, United States, 2015)Google Scholar
  24. 24.
    K.S. Thorne, in Snowmass'94 Summer Study on Particle and Nuclear Astrophysics and Cosmology, edited by E.W. Kolb, R. Peccei (World Scientific, Singapore, 1995) pp. 160--184Google Scholar
  25. 25.
    M. Hannam, Gen. Relativ. Gravit. 46, 1767 (2014)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    L. Blanchet, T. Damour, B.R. Iyer, C.M. Will, A.G. Wiseman, Phys. Rev. Lett. 74, 3515 (1995)ADSCrossRefGoogle Scholar
  27. 27.
    B. Aylott et al., Class. Quantum Grav. 26, 165008 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    J.D.E. Creighton, Phys. Rev. D 60, 022001 (1999)ADSCrossRefGoogle Scholar
  29. 29.
    M. Maggiore, Gravitational Waves, Vol. 1, Theory and Experiments (Oxford University Press, 2007)Google Scholar
  30. 30.
    B.S. Sathyaprakash, B.F. Schutz, Living Rev. Relativ. 12, 2 (2009)ADSCrossRefGoogle Scholar
  31. 31.
    E. Poisson, C. Will, Gravity: Newtonian, Post-Newtonian, Relativistic (Cambridge University Press, 2014)Google Scholar
  32. 32.
    L. Blanchet, B.R. Iyer, C.M. Will, A.G. Wiseman, Class. Quantum Grav. 13, 575 (1996)ADSCrossRefGoogle Scholar
  33. 33.
    M. Evans, Gen. Relativ. Gravit. 46, 1778 (2014)ADSCrossRefGoogle Scholar
  34. 34.
    P.R. Saulson, Fundamental of Interferometric Gravitational Wave Detectors (World Scientific, New York, 1994)Google Scholar
  35. 35.
    R. Forward, Gen. Relativ. Gravit. 2, 149 (1971)ADSCrossRefGoogle Scholar
  36. 36.
    R. Forward, Phys. Rev. D 17, 379 (1978)ADSCrossRefGoogle Scholar
  37. 37.
    R. Weiss, Quart. Prog. Rep. Res. Lab. Electron. MIT 105, 54 (1972)Google Scholar
  38. 38.
    R.W.P. Drever, Optical cavity laser interferometers for gravitational waves detection, in Laser Spectroscopy, Vol. V (Springer, 1981) pp. 33--40Google Scholar
  39. 39.
    Rochus E. Vogt, Proposal to the National Science Foundation: A Laser Interferometer Gravitational-wave Observatory (LIGO) (1989) https://dcc.ligo.org/public/0065/M890001/003/M890001-03%20edited.pdf
  40. 40.
    The LIGO Scientific Collaboration (G.M. Harry et al.), Class. Quantum Grav. 27, 084006 (2010)ADSCrossRefGoogle Scholar
  41. 41.
    B.F. Schutz, Class. Quantum Grav. 28, 125023 (2011)ADSCrossRefGoogle Scholar
  42. 42.
    K. Cannon, C. Hanna, D. Keppel, Phys. Rev. D 88, 024025 (2013)ADSCrossRefGoogle Scholar
  43. 43.
    B.P. Abbot et al., Living Rev. Relativ. 19, 1 (2016)ADSCrossRefGoogle Scholar
  44. 44.
    B.P. Abbott et al., Class. Quantum Grav. 33, 134001 (2016)ADSCrossRefGoogle Scholar
  45. 45.
    S. Droz, D.J. Knapp, E. Poisson, B.J. Owen, Phys. Rev. D 59, 124016 (1999)ADSCrossRefGoogle Scholar
  46. 46.
    S.M. Kay, Fundamentals of Statistical Signal Processing, Vol. 2, Detection Theory (Prentice-Hall Inc., New Jersey, 1993)Google Scholar
  47. 47.
    C.W. Helstrom, in Statistical Theory of Signal Detection, edited by C.W. Helstrom, second edition, International Series of Monographs in Electronics and Instrumentation (Pergamon, 1968) pp. 102--147Google Scholar
  48. 48.
    B. Allen, Phys. Rev. D 71, 062001 (2005)ADSCrossRefGoogle Scholar
  49. 49.
    S. Babak, R. Balasubramanian, D. Churches, T. Cokelaer, B.S. Sathyaprakash, Class. Quantum Grav. 23, 5477 (2006)ADSCrossRefGoogle Scholar
  50. 50.
    T. Cokelaer, Class. Quantum Grav. 24, 6227 (2007)ADSMathSciNetCrossRefGoogle Scholar
  51. 51.
    D.A. Brown, Searching for gravitational radiation from binary black hole MACHOs in the galactic halo, PhD Thesis, Wisconsin University, Milwaukee (2004)Google Scholar
  52. 52.
    S. Babak et al., Phys. Rev. D 87, 024033 (2013)ADSCrossRefGoogle Scholar
  53. 53.
    S.A. Usman et al., Class. Quantum Grav. 33, 215004 (2016)ADSCrossRefGoogle Scholar
  54. 54.
    T. Dal Canton et al., Phys. Rev. D 90, 082004 (2014)ADSCrossRefGoogle Scholar
  55. 55.
    M. Vallisneri, J. Kanner, R. Williams, A. Weinstein, B. Stephens, J. Phys.: Conf. Ser. 610, 012021 (2015)Google Scholar
  56. 56.
    J. Abadie et al., Phys. Rev. D 82, 102001 (2010)ADSCrossRefGoogle Scholar
  57. 57.
    J. Abadie et al., Nucl. Instrum. Methods Phys. Res. A 624, 223 (2010)ADSCrossRefGoogle Scholar
  58. 58.
    The LIGO Scientific Collaboration (S.J. Waldman et al.), Class. Quantum Grav. 23, S653 (2006)CrossRefGoogle Scholar
  59. 59.
    The LIGO Scientific Collaboration, The S5 Data Release (2014) DOI:10.7935/K5WD3XHR
  60. 60.
    B.P. Abbott et al., Phys. Rev. D 79, 122001 (2009)ADSCrossRefGoogle Scholar
  61. 61.
    B.P. Abbott et al., Phys. Rev. D 80, 047101 (2009)ADSCrossRefGoogle Scholar
  62. 62.
    J. Abadie et al., Phys. Rev. D 83, 122005 (2011)ADSCrossRefGoogle Scholar
  63. 63.
    P.D. Welch, IEEE Trans. Audio Electroacoust. 15, 70 (1967)ADSCrossRefGoogle Scholar
  64. 64.
    S. Rowan, J. Hough, Living Rev. Relativ. 3, 3 (2000)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Tecnológico de MonterreyCampus GuadalajaraJaliscoMexico
  2. 2.Departamento de FísicaCentro Universitario de Ciencias Exactas e Ingenierías, Universidad de GuadalajaraJaliscoMexico
  3. 3.Instituto de Física y MatemáticasUniversidad Michoacana de San Nicolás de HidalgoMichoacánMexico

Personalised recommendations