Advertisement

Searching the conditions for a table-like shape of the magnetic entropy in the magnetocaloric LBMO2.98/LBMO2.95 composite

  • R. M’nassriEmail author
Regular Article

Abstract.

The conditions to obtain a table-like behavior of the entropy change, on the composite system \((LBMO_{2.98})_{1-x}/(LBMO_{2.95})_{x}\), have been investigated from the isothermal magnetic entropy change versus temperature curves \( \Delta S(T)\) of La2/3Ba1/3MnO2.98 and La2/3Ba1/3MnO2.95 materials. The latters are characterized by Curie temperatures (\( T_{C}\)) values (310 K for La2/3Ba1/3MnO2.98 and 292 K for La2/3Ba1/3MnO2.95 around room temperature. The temperature dependence of the isothermal magnetic entropy change \(\Delta S(T)\) has been calculated for the composite system with \( 0 \le x \le 1\) . The optimum magnetocaloric effect (MCE) properties, i.e., a \(\Delta S(T)\) curve with table-like shape, have been found in the temperature interval of 293-309 K for the composite with \( x = 0.48\) at 1 T. The \(\Delta S(T)\) of the composite comes close to a constant value of 1.73(7)J/(kg ·K). A large refrigerant capacity value of \(\sim 66.4(9)\) J/kg is obtained in a wide temperature span over 16 K. This composite can be used as the working material in the Ericsson-cycle magnetic regenerative refrigerator. These results make the \((LBMO_{2.98})_{0.52}/(LBMO_{2.95})_{0.48}\) system a promising material for practical magnetic refrigeration using a lower field (1 T), which is much easier to generate by permanent magnets, than higher fields, like 2 T.

References

  1. 1.
    V.K. Pecharsky, K.A. Gschneiner, J. Magn. & Magn. Mater. 200, 44 (1999)ADSCrossRefGoogle Scholar
  2. 2.
    S. Choura Maatar, R. Mʼnassri, W. Cheikhrouhou Koubaa, M. Koubaa, A. Cheikhrouhou, J. Solid State Chem. 225, 83 (2015)ADSCrossRefGoogle Scholar
  3. 3.
    Mahmoud Aly Hamad, J. Therm. Anal. Calorim. 111, 1251 (2013)CrossRefGoogle Scholar
  4. 4.
    Mahmoud Aly Hamad, J. Therm. Anal. Calorim. 115, 523 (2014)CrossRefGoogle Scholar
  5. 5.
    K.A. Gschneidner Jr., V.K. Pecharsky, A.O. Tsokol, Rep. Prog. Phys. 68, 1479 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    Mahmoud Aly Hamad, J. Therm. Anal. Calorim. 113, 609 (2013)CrossRefGoogle Scholar
  7. 7.
    K.A. Gschneidner Jr., V.K. Pecharsky, J. Appl. Phys. 85, 5365 (1999)ADSCrossRefGoogle Scholar
  8. 8.
    R. Mʼnassri, N. Chniba Boudjada, A. Cheikhrouhou, J. Alloys Compd. 626, 20 (2015)CrossRefGoogle Scholar
  9. 9.
    R. Mʼnassri, A. Cheikhrouhou, J. Korean Phys. Soc. 64, 879 (2014)CrossRefGoogle Scholar
  10. 10.
    A. Selmi, R. Mʼnassri, W. Cheikhrouhou-Koubaa, N. Chniba Boudjada, A. Cheikhrouhou, Ceram. Int. 41, 7723 (2015)CrossRefGoogle Scholar
  11. 11.
    F.X. Hu, B.G. Shen, J.R. Sun, Z.H. Cheng, G.H. Rao, X.X. Zhang, Appl. Phys. Lett. 78, 3675 (2001)ADSCrossRefGoogle Scholar
  12. 12.
    R. Bjørk, C.R.H. Bahl, M. Katter, J. Magn. & Magn. Mater. 322, 3882 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    S. Fujieda, A. Fujita, K. Fukamichi, Appl. Phys. Lett. 81, 1276 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    O. Tegus, E. Bruck, K.H.J. Buschow, F.R. De Boer, Nature 415, 150 (2002)ADSCrossRefGoogle Scholar
  15. 15.
    V.K. Pecharsky, K.A. Gschneidner, Jr., Phys. Rev. Lett. 78, 4494 (1997)ADSCrossRefGoogle Scholar
  16. 16.
    F.X. Hu, B. Shen, J. Sun, Z. Cheng, Phys. Rev. B 64, 132412 (2001)ADSCrossRefGoogle Scholar
  17. 17.
    F.X. Hu, B.G. Shen, J.R. Sun, Appl. Phys. Lett. 76, 3460 (2000)ADSCrossRefGoogle Scholar
  18. 18.
    N. Kumar Swamy, N. Pavan Kumar, P. Venugopal Reddy, Manish Gupta, S. Shanmukharao Samatham, D. Venkateshwarulu, V. Ganesan, Vikas Malik, B.K. Das, J. Therm. Anal. Calorim. 119, 1191 (2015)CrossRefGoogle Scholar
  19. 19.
    A. Selmi, R. Mʼnassri, W. Cheikhrouhou-Koubaa, N. Chniba Boudjada, A. Cheikhrouhou, Ceram. Int. 41, 10177 (2015)CrossRefGoogle Scholar
  20. 20.
    R. Mʼnassri, W. Cheikhrouhou-Koubaa, M. Koubaa, N. Boudjada, A. Cheikhrouhou, Solid State Commun. 151, 1579 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    R. Mʼnassri, W. Cheikhrouhou-Koubaa, N. Boudjada, A. Cheikhrouhou, J. Supercond. Nov. Magn. 26, 1429 (2013)CrossRefGoogle Scholar
  22. 22.
    R. Mʼnassri, A. Cheikhrouhou, J. Supercond. Nov. Magn. 27, 421 (2014)CrossRefGoogle Scholar
  23. 23.
    R. Mʼnassri, W. Cheikhrouhou-Koubaa, N. Chniba-Boudjada, A. Cheikhrouhou, J. Appl. Phys. 113, 073905 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    B.F. Yu, Q. Gao, B. Zhang, X.Z. Meng, Z. Chen, Int. J. Refrig. 26, 622 (2003)CrossRefGoogle Scholar
  25. 25.
    A.M. Tishin, Y.I. Spichkin, The Magnetocaloric Effect and its Applications (IOP Publishing, Bristol, 2003)Google Scholar
  26. 26.
    P. Álvarez, J.L. Sánchez, Llamazares, P. Gorria, J.A. Blanco, Appl. Phys. Lett. 99, 232501 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    H. Mbarek, R. Mʼnasri, W. Cheikhrouhou-Koubaa, Phys. Status Solidi 211, 975 (2014)CrossRefGoogle Scholar
  28. 28.
    M.E. Wood, W.H. Potter, Cryogenics 25, 667 (1985)ADSCrossRefGoogle Scholar
  29. 29.
    R. Mʼnassri, J. Supercond. Nov. Magn. 27, 1787 (2014)CrossRefGoogle Scholar
  30. 30.
    J. Świerczek, T. Mydlarz, J. Alloys Compd. 509, 9340 (2011)CrossRefGoogle Scholar
  31. 31.
    P. Álvarez, P. Gorria, J.L. Sánchez Llamazares, M.J. Pérez, V. Franco, M. Reiffers, I. Čurlik, E. Gažo, J. Kováč, J.A. Blanco, Intermetallics 19, 982 (2011)CrossRefGoogle Scholar
  32. 32.
    P. Álvarez, P. Gorria, V. Franco, J. Sánchez Marcos, M.J. Pérez, J.L. Sánchez Llamazares, I. Puente-Orench, J.A. Blanco, J. Phys.: Condens. Matter 22, 216005 (2010)ADSGoogle Scholar
  33. 33.
    A. Smith, Adv. Energy Mater. 2, 1288 (2012)CrossRefGoogle Scholar
  34. 34.
    W. Zhong, W. Chen, C.T. Au, Y.W. Du, J. Magn. & Magn. Mater. 261, 238 (2003)ADSCrossRefGoogle Scholar
  35. 35.
    M.A. Hamad, Phase Transit. 85, 106 (2012)CrossRefGoogle Scholar
  36. 36.
    R. Mʼnassri, A. Cheikhrouhou, J. Supercond. Nov. Magn. 27, 1463 (2014)CrossRefGoogle Scholar
  37. 37.
    S.C. Paticopoulos, R. Caballero-Flores, V. Franco, J.S. Blazquez, A. Conde, K.E. Knipling, M.A. Willard, Solid State Commun. 152, 1590 (2012)ADSCrossRefGoogle Scholar
  38. 38.
    A. Smaili, R. Chahine, Cryogenics 38, 247 (1998)ADSCrossRefGoogle Scholar
  39. 39.
    R. Mʼnassri, N. Chniba Boudjada, A. Cheikhrouhou, Ceram. Int. 42, 7447 (2016)CrossRefGoogle Scholar
  40. 40.
    H. Takeya, V.K. Pecharsky, K.A. Gschneidner, J.O. Moorman, Appl. Phys. Lett. 64, 2739 (1994)ADSCrossRefGoogle Scholar
  41. 41.
    P. Gorria, J.L. Sánchez Llamazares, P. Álvarez, M.J. Pérez, J. Sánchez Marcos, J.A. Blanco, J. Phys. D: Appl. Phys. 41, 192003 (2008)ADSCrossRefGoogle Scholar
  42. 42.
    J.A. Barclay, J. Alloys Compd. 207--208, 355 (1994)CrossRefGoogle Scholar
  43. 43.
    R. Mʼnassri, N. Chniba Boudjada, A. Cheikhrouhou, J. Alloys Compd. 640, 183 (2015)CrossRefGoogle Scholar
  44. 44.
    A. Selmi, R. Mʼnassri, W. Cheikhrouhou-Koubaa, N. Chniba Boudjada, A. Cheikhrouhou, J. Alloys Compd. 619, 627 (2015)CrossRefGoogle Scholar
  45. 45.
    J.J. Wang, Z.D. Han, Q. Tao, B. Qian, P. Zhang, X.F. Jiang, Physica B 416, 76 (2013)ADSCrossRefGoogle Scholar
  46. 46.
    A.M. Aliev, A.G. Gamzatov, K.I. Kamilov, A.R. Kaul, N.A. Babushkina, Appl. Phys. Lett. 101, 172401 (2012)ADSCrossRefGoogle Scholar
  47. 47.
    M. Foldeaki, R. Chahine, T.K. Bose, J. Appl. Phys. 77, 3528 (1995)ADSCrossRefGoogle Scholar
  48. 48.
    H. Yang, Y.H. Zhu, T. Xian, J.L. Jiang, J. Alloys Compd. 555, 150 (2013)CrossRefGoogle Scholar
  49. 49.
    X.X. Zhang, G.H. Wen, F.W. Wang, W.H. Wang, C.H. Yu et al., Appl. Phys. Lett. 77, 3072 (2000)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Unité de recherche Matériaux Avancés et Nanotechnologies (URMAN), Higher Institute of Applied Sciences and Technology of KasserineKairouan UniversityKasserineTunisia

Personalised recommendations