The effects of deposition time on surface morphology, structural, electrical and optical properties of sputtered Ag-Cu thin films

  • Azin Ahmadpourian
  • Carlos Luna
  • Arash Boochani
  • Ali ArmanEmail author
  • Amine Achour
  • Sahare Rezaee
  • Sirvan Naderi
Regular Article


The preparation of designed nanostructured thin films combining nano grains of different compositions and physical properties represents a promising avenue for the exploration of novel collective behaviors with technological potentials. Herein, nanostructured Ag-Cu thin films with different surface morphology properties were grown by magnetron sputtering varying the deposition time (4-24 min) and fixing the other deposition conditions. X-ray diffraction studies corroborated that Cu and Ag tend to appear as separated phases with nanometric sizes due to the fact that these elements are rather immiscible. The deposited Cu tended to be partially oxidized with crystal sizes of several tens of nm, whereas the deposited Ag phase displayed a poor crystallinity with an average crystal size of around 3nm. However, at deposition time of few minutes, the formation of Ag-Cu crystals with a preferable crystallization orientation along the [111] direction was detected. The surface morphology of the obtained thin films was studied by atomic force microscopy determining the surface roughness and average particle sizes of the samples. These parameters were correlated with the plasmon resonance extinction bands of the different Ag-Cu films and their electrical properties, providing a reproducible route to obtain thin films with tuned electrical resistances and optical properties.


  1. 1.
    J.L. Kirschvink, A. Kirschvink-Kobayashi, B.J. Woodford, Proc. Natl. Acad. Sci. 89, 7683 (1992)CrossRefADSGoogle Scholar
  2. 2.
    A.H. Lu, E.L. Salabas, F. Schuth, Angew. Chem. Int. Ed. 46, 1222 (2007)CrossRefGoogle Scholar
  3. 3.
    A. Arman, T. Ghodselahi, M. Molamohammadi, S. Solaymani, H. Zahrabi, A. Ahmadpourian, Prot. Met. Phys. Chem. Surf. 51, 575 (2015)CrossRefGoogle Scholar
  4. 4.
    S.P. Gubin, Ros. Khim. Zh. 44, 23 (2000)Google Scholar
  5. 5.
    T. Ghodselahi, A. Arman, J. Mater. Sci.: Mater. Electron. 26, 4193 (2015)Google Scholar
  6. 6.
    M. Molamohammadi, C. Luna, A. Arman, S. Solaymani, A. Boochani, A. Ahmadpourian, A. Shafiekhani, J. Mater. Sci.: Mater. Electron. 26, 6814 (2015)Google Scholar
  7. 7.
    W.A. de Heer, P. Milani, A. Chatelain, Phys. Rev. Lett. 65, 488 (1990)CrossRefADSGoogle Scholar
  8. 8.
    Y. Song, Y. Ma, Y. Wang, J. Di, Y. Tu, Electrochim. Acta 55, 4909 (2010)CrossRefGoogle Scholar
  9. 9.
    J.-P. Lee, D. Chen, X. Li, S. Yoo, L.A. Bottomley, M.A. El-Sayed, S. Park, M. Liu, Nanoscale 5, 11620 (2013)CrossRefADSGoogle Scholar
  10. 10.
    S. Sun, C. Murray, D. Weller, L. Folks, A. Moser, Science 287, 1989 (2000)CrossRefADSGoogle Scholar
  11. 11.
    O. Pena, U. Pal, L. Rodríguez-Fernández, H.G. Silva-Pereyra, V. Rodríguez-Iglesias, J.C. Cheang-Wong, J. Arenas-Alatorre, A. Oliver, J. Phys. Chem. C 113, 2296 (2009)CrossRefGoogle Scholar
  12. 12.
    R. Harpeness, A. Gedanken, Langmuir 20, 3431 (2004)CrossRefGoogle Scholar
  13. 13.
    H. Kobayashi, M. Yamauchi, H. Kitagawa, Y. Kubota, K. Kato, M. Takata, J. Am. Chem. Soc. 132, 5576 (2010)CrossRefGoogle Scholar
  14. 14.
    F. Tao, M.E. Grass, Y. Zhang, D.R. Butcher, J.R. Renzas, Z. Liu, J.Y. Chung, B.S. Mun, M. Salmeron, G.A. Somorjai, Science 322, 932 (2008)CrossRefADSGoogle Scholar
  15. 15.
    Y. Sugano, Y. Shiraishi, D. Tsukamoto, S. Ichikawa, S. Tanaka, T. Hirai, Angew. Chem. 125, 5403 (2013)CrossRefGoogle Scholar
  16. 16.
    M. Taner, N. Sayar, I.G. Yulug, S. Suzer, J. Mater. Chem. 21, 13150 (2011)CrossRefGoogle Scholar
  17. 17.
    X. Gao, J. Sun, M. Hu, L. Weng, F. Zhou, W. Liu, Appl. Surf. Sci. 257, 7643 (2010)CrossRefADSGoogle Scholar
  18. 18.
    H.J. Jiang, K.S. Moon, C.P. Wong, Synthesis of Ag-Cu alloy nanoparticles for lead-free interconnect materials, in Proceedings of the International Symposium on Advanced Packaging Materials: Processes, Properties and Interfaces, 2005 (IEEE, 2005) pp. 173--177, DOI:10.1109/ISAPM.2005.1432072
  19. 19.
    W. Bhagathsingh, A. Samson Nesaraj, Trans. Nonferrous Met. Soc. China 23, 128 (2013)CrossRefGoogle Scholar
  20. 20.
    J. He, V. Ji, L. Meng, Mater. Sci. Eng. A 478, 305 (2008)CrossRefGoogle Scholar
  21. 21.
    P. Lu, M. Chandross, T.J. Boyle, B.G. Clark, P. Vianco, APL Mater. 2, 022107 (2014)CrossRefADSGoogle Scholar
  22. 22.
    H.W. Sheng, J.H. He, E. Ma, Phys. Rev. B. 65, 184203 (2002)CrossRefADSGoogle Scholar
  23. 23.
    E. Choi, S. Lee, Y. Piao, CrystEngComm 17, 5940 (2015)CrossRefGoogle Scholar
  24. 24.
    K.S. Tan, K.Y. Cheong, J. Nanopart. Res. 15, 1 (2013)Google Scholar
  25. 25.
    T. Ghodselahi, M.A. Vesaghi, A. Gelali, H. Zahrabi, S. Solaymani, Appl. Surf. Sci. 258, 727 (2011)CrossRefADSGoogle Scholar
  26. 26.
    A. Ceylan, K. Jastrzembski, S.I. Shah, Metall. Mater. Trans. A 37, 2033 (2006)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Azin Ahmadpourian
    • 1
  • Carlos Luna
    • 2
  • Arash Boochani
    • 1
  • Ali Arman
    • 3
    Email author
  • Amine Achour
    • 4
  • Sahare Rezaee
    • 1
  • Sirvan Naderi
    • 3
  1. 1.Department of Physics, Kermanshah BranchIslamic Azad UniversityKermanshahIran
  2. 2.Universidad Autónoma de Nuevo León (UANL)Facultad de Ciencias Físico Matemáticas (FCFM), Av. Pedro de Alba s/n, San Nicolás de los GarzaNuevo LeónMexico
  3. 3.Young Researchers and Elite Club, Kermanshah BranchIslamic Azad UniversityKermanshahIran
  4. 4.Institut National de la Recherche Scientifique (INRS)1650 Boulevard Lionel- BouletVarennesCanada

Personalised recommendations