Advertisement

Measurement of the muon production depths at the Pierre Auger Observatory

  • Laura Collica
  • Pierre Auger Collaboration
Regular Article

Abstract.

The muon content of extensive air showers is an observable sensitive to the primary composition and to the hadronic interaction properties. The Pierre Auger Observatory uses water-Cherenkov detectors to measure particle densities at the ground and therefore is sensitive to the muon content of air showers. We present here a method which allows us to estimate the muon production depths by exploiting the measurement of the muon arrival times at the ground recorded with the Surface Detector of the Pierre Auger Observatory. The analysis is performed in a large range of zenith angles, thanks to the capability of estimating and subtracting the electromagnetic component, and for energies between 1019.2 and 1020eV.

References

  1. 1.
    I. Valiño for the Pierre Auger Collaboration, Proc. Sci. PoS(ICRC2015), 271 (2015)Google Scholar
  2. 2.
    The Pierre Auger Collaboration, Astropart. Phys. 34, 314 (2010) arXiv:1009.1855 ADSCrossRefGoogle Scholar
  3. 3.
    The Pierre Auger Collaboration, Nucl. Instrum. Methods A 798, 172 (2015) arXiv:1502.01323 ADSCrossRefGoogle Scholar
  4. 4.
    The Pierre Auger Collaboration, Phys. Rev. D 90, 122005 (2014) arXiv:1409.4809 ADSCrossRefGoogle Scholar
  5. 5.
    The Pierre Auger Collaboration, Phys. Rev. D 90, 012012 (2014) arXiv:1407.5919 ADSCrossRefGoogle Scholar
  6. 6.
    The Pierre Auger Collaboration, Nucl. Instrum. Methods A 586, 409 (2008) arXiv:0712.2832 ADSCrossRefGoogle Scholar
  7. 7.
    The Pierre Auger Collaboration, Nucl. Instrum. Methods A 620, 227 (2010) arXiv:0907.4282 ADSCrossRefGoogle Scholar
  8. 8.
    H.J. Mathes, for the Pierre Auger Collaboration, in Proc. 32th ICRC, Beijing, China (2011), Vol. 3, (Curran Associates, Inc., Red Hook, New York, 2014) p. 153Google Scholar
  9. 9.
    C. Bonifazi for the Pierre Auger Collaboration, Nucl. Phys. Proc. Suppl. 190, 20 (2009) arXiv:0901.3138 ADSCrossRefGoogle Scholar
  10. 10.
    L. Cazon, R.A. Vazquez, A.A. Watson, E. Zas, Astropart. Phys. 21, 71 (2004) arXiv:astro-ph/0311223 ADSCrossRefGoogle Scholar
  11. 11.
    L. Cazon, R. Conceição, M. Pimenta, E. Santos, Astropart. Phys. 36, 211 (2012) arXiv:1201.5294 ADSCrossRefGoogle Scholar
  12. 12.
    L. Cazon, R.A. Vazquez, E. Zas, Astropart. Phys. 23, 393 (2005) arXiv:astro-ph/0412338 ADSCrossRefGoogle Scholar
  13. 13.
    D. Heck, CORSIKA: A Monte Carlo code to simulate extensive air showers, FZKA-6019 (1998)Google Scholar
  14. 14.
    T. Pierog et al., Phys. Rev. C 92, 034906 (2015) arXiv:1306.0121 ADSCrossRefGoogle Scholar
  15. 15.
    S. Ostapchenko, Phys. Rev. D 83, 014018 (2011) arXiv:1010.1869 ADSCrossRefGoogle Scholar
  16. 16.
    S. Andringa, L. Cazon, R. Conceição, M. Pimenta, Astropart. Phys. 35, 821 (2012) arXiv:1111.1424 ADSCrossRefGoogle Scholar
  17. 17.
    S. Andringa, R. Conceição, M. Pimenta, Astropart. Phys. 34, 360 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    W. Heitler, Quantum Theory of Radiation, 3rd edition (Oxford University Press, London, 1954)Google Scholar
  19. 19.
    J. Matthews, Astropart. Phys. 22, 387 (2005)ADSCrossRefGoogle Scholar
  20. 20.
    L. Collica, PhD Thesis, Università di Milano and Université Paris Diderot (2014) http://hdl.handle.net/2434/252009
  21. 21.
    A.M. Hillas, 17th ICRC, Paris, France, Conference Papers, Vol. 8 (1981) A82-22832 09-35Google Scholar
  22. 22.
    P. Billoir, Astropart. Phys. 30, 270 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    The Pierre Auger Collaboration, Phys. Rev. D 92, 019903 (2015)ADSGoogle Scholar
  24. 24.
    L. Collica for the Pierre Auger Collaboration, Proc. Sci. PoS(ICRC2015), 336 (2015)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.INFN TorinoTorinoItaly
  2. 2.Observatorio Pierre AugerMalargüeArgentina

Personalised recommendations