Advertisement

Vibration analysis of nonlocal beams made of functionally graded material in thermal environment

  • Farzad EbrahimiEmail author
  • Mohammad Reza Barati
Regular Article

Abstract.

In this paper, thermal vibration behavior of functionally graded (FG) nanobeams exposed to various kinds of thermo-mechanical loading including uniform, linear and non-linear temperature rise embedded in a two-parameter elastic foundation are investigated based on third-order shear deformation beam theory which considers the influence of shear deformation without the need to shear correction factors. Material properties of FG nanobeam are supposed to be temperature-dependent and vary gradually along the thickness according to the Mori-Tanaka homogenization scheme. The influence of small scale is captured based on nonlocal elasticity theory of Eringen. The nonlocal equations of motion are derived through Hamilton’s principle and they are solved applying analytical solution. The comparison of the obtained results is conducted with those of nonlocal Euler-Bernoulli beam theory and it is demonstrated that the proposed modeling predicts correctly the vibration responses of FG nanobeams. The influences of some parameters including gradient index, nonlocal parameter, mode number, foundation parameters and thermal loading on the thermo-mechanical vibration characteristics of the FG nanobeams are presented.

References

  1. 1.
    A.E. Alshorbagy, M.A. Eltaher, F.F. Mahmoud, Appl. Math. Model. 35, 412 (2011)MathSciNetCrossRefGoogle Scholar
  2. 2.
    L.-L. Ke, Y.-S. Wang, Compos. Struct. 93, 342 (2011)CrossRefGoogle Scholar
  3. 3.
    M. Asghari et al., Mater. Des. 31, 2324 (2010)CrossRefGoogle Scholar
  4. 4.
    M. Asghari et al., Mater. Des. 32, 1435 (2011)CrossRefGoogle Scholar
  5. 5.
    R. Ansari, R. Gholami, S. Sahmani, Compos. Struct. 94, 221 (2011)CrossRefGoogle Scholar
  6. 6.
    L.-L. Ke et al., Int. J. Eng. Sci. 50, 256 (2012)CrossRefGoogle Scholar
  7. 7.
    M.A. Eltaher, S.A. Emam, F.F. Mahmoud, Appl. Math. Comput. 218, 7406 (2012)MathSciNetGoogle Scholar
  8. 8.
    M.A. Eltaher, A.E. Alshorbagy, F.F. Mahmoud, Compos. Struct. 99, 193 (2013)CrossRefGoogle Scholar
  9. 9.
    M.A. Eltaher, S.A. Emam, F.F. Mahmoud, Compos. Struct. 96, 82 (2013)CrossRefGoogle Scholar
  10. 10.
    M. Simşek, H.H. Yurtcu, Compos. Struct. 97, 378 (2013)CrossRefGoogle Scholar
  11. 11.
    O. Rahmani, O. Pedram, Int. J. Eng. Sci. 77, 55 (2014)MathSciNetCrossRefGoogle Scholar
  12. 12.
    R. Nazemnezhad, S. Hosseini-Hashemi, Compos. Struct. 110, 192 (2014)CrossRefGoogle Scholar
  13. 13.
    S. Hosseini-Hashemi et al., Acta Mech. 225, 1555 (2014)MathSciNetCrossRefGoogle Scholar
  14. 14.
    F. Ebrahimi et al., J. Mech. Sci. Technol. 29, 1207 (2015)CrossRefGoogle Scholar
  15. 15.
    F. Ebrahimi, E. Salari, Compos. Part B: Eng. 79, 156 (2015)CrossRefGoogle Scholar
  16. 16.
    F. Ebrahimi, E. Salari, Comput. Model. Eng. Sci. 105, 151 (2015)Google Scholar
  17. 17.
    R. Ansari, T. Pourashraf, R. Gholami, Thin-Walled Struct. 93, 169 (2015)CrossRefGoogle Scholar
  18. 18.
    M. Simşek, J.N. Reddy, Compos. Struct. 101, 47 (2013)CrossRefGoogle Scholar
  19. 19.
    S. Sahmani, R. Ansari, Appl. Math. Modell. 37, 9499 (2013)MathSciNetCrossRefGoogle Scholar
  20. 20.
    O. Rahmani, A.A. Jandaghian, Appl. Phys. A 119, 1019 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    F. Ebrahimi, E. Salari, Compos. Struct. 128, 363 (2015)CrossRefGoogle Scholar
  22. 22.
    F. Ebrahimi, E. Salari, Compos. Part B: Eng. 78, 272 (2015)CrossRefGoogle Scholar
  23. 23.
    J.N. Reddy, Int. J. Eng. Sci. 45, 288 (2007)CrossRefGoogle Scholar
  24. 24.
    M. Aydogdu, Physica E 41, 1651 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    M. Touratier, Int. J. Eng. Sci. 29, 901 (1991)CrossRefGoogle Scholar
  26. 26.
    Thermophysical Properties Research Center, Thermophysical properties of high temperature solid materials, Vol. 1. Elements-Pt. 1, edited by Yeram Sarkis Touloukian (Macmillan, London, 1967)Google Scholar
  27. 27.
    A.C. Eringen, D.G.B. Edelen, Int. J. Eng. Sci. 10, 233 (1972)MathSciNetCrossRefGoogle Scholar
  28. 28.
    A.C. Eringen, Int. J. Eng. Sci. 10, 1 (1972)MathSciNetCrossRefGoogle Scholar
  29. 29.
    A.C. Eringen, J. Appl. Phys. 54, 4703 (1983)ADSCrossRefGoogle Scholar
  30. 30.
    Y.Q. Zhang, G.R. Liu, X.Y. Xie, Phys. Rev. B 71, 195404 (2005)ADSCrossRefGoogle Scholar
  31. 31.
    L. Wang, H. Hu, Phys. Rev. B 71, 195412 (2005)ADSCrossRefGoogle Scholar
  32. 32.
    Y. Kiani, M.R. Eslami, Int. J. Mech. Mater. Des. 6, 229 (2010)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, Faculty of EngineeringImam Khomeini International UniversityQazvinIran

Personalised recommendations