Advertisement

Numerical solution of fractional sub-diffusion and time-fractional diffusion-wave equations via fractional-order Legendre functions

  • M. R. HooshmandaslEmail author
  • M. H. Heydari
  • C. Cattani
Regular Article

Abstract.

Fractional calculus has been used to model physical and engineering processes that are best described by fractional differential equations. Therefore designing efficient and reliable techniques for the solution of such equations is an important task. In this paper, we propose an efficient and accurate Galerkin method based on the fractional-order Legendre functions (FLFs) for solving the fractional sub-diffusion equation (FSDE) and the time-fractional diffusion-wave equation (FDWE). The time-fractional derivatives for FSDE are described in the Riemann-Liouville sense, while for FDWE are described in the Caputo sense. To this end, we first derive a new operational matrix of fractional integration (OMFI) in the Riemann-Liouville sense for FLFs. Next, we transform the original FSDE into an equivalent problem with fractional derivatives in the Caputo sense. Then the FLFs and their OMFI together with the Galerkin method are used to transform the problems under consideration into the corresponding linear systems of algebraic equations, which can be simply solved to achieve the numerical solutions of the problems. The proposed method is very convenient for solving such kind of problems, since the initial and boundary conditions are taken into account automatically. Furthermore, the efficiency of the proposed method is shown for some concrete examples. The results reveal that the proposed method is very accurate and efficient.

References

  1. 1.
    I. Podlubny, Fractional Differential Equations (Academic Press, San Diego, 1999)Google Scholar
  2. 2.
    K.B. Oldham, J. Spanier, The Fractional Calculus: Theory and Application of Differentiation and Integration to Arbitrary Order (Academic Press, New York, 1974)Google Scholar
  3. 3.
    S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications (Gordon and Breach Science, 1993)Google Scholar
  4. 4.
    K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations (John Wiley and Sons, 1993)Google Scholar
  5. 5.
    R. Du, W.R. Cao, Z.Z. Sun, Appl. Math. Model. 34, 2998 (2010)MathSciNetCrossRefGoogle Scholar
  6. 6.
    F. Liu, V. Anh, I. Turner, J. Comput. Appl. Math. 166, 209 (2004)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    F. Liu, P. Zhuang, V. Anh, I. Turner, K. Burrage, Appl. Math. Comp. 191, 12 (2007)MathSciNetCrossRefGoogle Scholar
  8. 8.
    C. Tadjeran, M.M. Meerschaert, H.-P. Scheffler, J. Comput. Phys. 213, 205 (2006)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    P. Zhuang, F. Liu, V. Anh, I. Turner, SIAM J. Numer. Anal. 46, 1079 (2008)MathSciNetCrossRefGoogle Scholar
  10. 10.
    F. Liu, C. Yang, K. Burrage, J. Comput. Appl. Math. 231, 160 (2009)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    S. Yuste, L. Acedo, SIAM J. Numer. Anal. 42, 1862 (2005)MathSciNetCrossRefGoogle Scholar
  12. 12.
    S. Yuste, J. Comput. Phys. 216, 264 (2006)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    C.M. Chen, F. Liu, I. Turner, V. Anh, J. Comput. Phys. 227, 886 (2007)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    R. Scherer, S. Kalla, L. Boyadjiev, B. Al-Saqabi, Appl. Numer. Math. 58, 1212 (2008)MathSciNetCrossRefGoogle Scholar
  15. 15.
    T.A.M. Langlands, B. Henry, J. Comput. Phys. 205, 719 (2005)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    J.K.R. Metzler, Phys. Rep. 339, 1 (2000)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    M. Cui, J. Comput. Phys. 228, 7792 (2009)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    G. Gao, Z. Sun, J. Comput. Phys. 230, 586 (2011)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    J. Renand, Z. Sun, X. Zhao, J. Comput. Phys. 232, 456 (2013)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    X. Zhao, Z. Sun, J. Comput. Phys. 230, 6061 (2011)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    C. Chen, F. Liu, K. Burrage, J. Comput. Phys. 198, 754 (2008)MathSciNetGoogle Scholar
  22. 22.
    D. Murio, Comput. Math. Appl. 56, 1138 (2008)MathSciNetCrossRefGoogle Scholar
  23. 23.
    T. Langlands, B. Henry, J. Comput. Phys. 205, 719 (2005)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    P. Zhuang, F. Liu, V. Anh, I. Turner, IMA J. Appl. Math. 74, 645 (2009)MathSciNetCrossRefGoogle Scholar
  25. 25.
    C. Chen, F. Liu, I. Turner, V. Anh, Numer. Algor. 54, 1 (2010)MathSciNetCrossRefGoogle Scholar
  26. 26.
    C. Chen, F. Liu, I. Turner, V. Anh, SIAM J. Sci. Comput. 32, 1740 (2010)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Y. Zhang, Z. Sun, H. Wu, SIAM J. Numer. Anal. 49, 2302 (2011)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Y. Zhang, Z. Sun, J. Comput. Phys. 230, 8713 (2011)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    M. Cui, J. Comput. Phys. 231, 2621 (2012)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    X. Zhao, Q. Xu, Appl. Math. Model. 38, 3848 (2014)MathSciNetCrossRefGoogle Scholar
  31. 31.
    A. Mohebbi, M. Abbaszadeh, M. Dehghan, Eng. Anal. Boundary Elem. 38, 72 (2014)MathSciNetCrossRefGoogle Scholar
  32. 32.
    J. Chen, F. Liu, Q. Liu, X. Chen, V. Anh, I. Turner, K. Burrage, Appl. Math. Model. 38, 3695 (2014)MathSciNetCrossRefGoogle Scholar
  33. 33.
    A.H. Bhrawy, E.H. Dohac, D. Baleanud, S.S. Ezz-Eldien, J. Comput. Phys. 293, 142 (2015)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    J. Chen, F. Liu, V. Anh, S. Shen, Q. Liu, C. Liao, Appl. Math. Comput. 219, 1737 (2012)MathSciNetGoogle Scholar
  35. 35.
    F. Mainardi, Appl. Math. Lett. 9, 23 (1996)MathSciNetCrossRefGoogle Scholar
  36. 36.
    W. Wess, J. Math. Phys. 27, 2782 (1996)ADSCrossRefGoogle Scholar
  37. 37.
    W.R. Schneider, W. Wess, J. Math. Phys. 30, 134 (1989)ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    Y.A. Rossikhin, M.V. Shitikova, Appl. Mech. Rev. 50, 15 (1997)ADSCrossRefGoogle Scholar
  39. 39.
    Z.Z. Sun, X. Wu, Appl. Numer. Math. 56, 193 (2006)MathSciNetCrossRefGoogle Scholar
  40. 40.
    M. Cui, J. Comput. Phys. 6, 383 (2013)ADSGoogle Scholar
  41. 41.
    X. Hu, L. Zhang, Comput. Phys. Commun. 182, 1645 (2011)ADSCrossRefGoogle Scholar
  42. 42.
    X. Hu, L. Zhang, Appl. Math. Comput. 218, 5019 (2012)MathSciNetGoogle Scholar
  43. 43.
    C.F.L. Godinho, J. Weberszpil, J.A. Helayel-Neto, Chaos Solitons Fractals 4, 765 (2012)ADSMathSciNetCrossRefGoogle Scholar
  44. 44.
    R. Darzi, B. Mohammadzade, S. Mousavi, R. Beheshti, J. Math. Comput. Sci. 6, 79 (2013)Google Scholar
  45. 45.
    M.H. Heydari, M.R. Hooshmandasl, F.M.M. Ghaini, F. Fereidouni, Eng. Anal. Bound. Elem. 37, 1331 (2013)MathSciNetCrossRefGoogle Scholar
  46. 46.
    C. Canuto, M. Hussaini, A. Quarteroni, T. Zang, Spectral methods in fluid dynamics (Springer, 1988)Google Scholar
  47. 47.
    A. Saadatmandi, M. Dehghan, Comput. Math. Appl. 59, 1326 (2010)MathSciNetCrossRefGoogle Scholar
  48. 48.
    E.H. Doha, A.H. Bhrawy, S.S. Ezz-Eldien, Appl. Math. Model. 36, 4931 (2012)MathSciNetCrossRefGoogle Scholar
  49. 49.
    E.H. Doha, A.H. Bhrawy, S.S. Ezz-Eldien, Comput. Math. Appl. 62, 2364 (2011)MathSciNetCrossRefGoogle Scholar
  50. 50.
    D. Baleanu, A.H. Bhrawy, T.M. Taha, Abstr. Appl. Anal. 2013, 546502 (2013)MathSciNetGoogle Scholar
  51. 51.
    M.H. Heydari, M.R. Hooshmandasl, F.M.M. Ghaini, Comput. Math. Appl. 68, 269 (2014)MathSciNetCrossRefGoogle Scholar
  52. 52.
    A.H. Bhrawy, M.A. Zaky, R.A.V. Gorder, Numer. Algor. 71, 151 (2016)CrossRefGoogle Scholar
  53. 53.
    A.H. Bhrawy, E.H. Doha, S.S. Ezz-Eldien, M.A. Abdelkawy, Calcolo 53, 1 (2016)MathSciNetCrossRefGoogle Scholar
  54. 54.
    M.H. Heydari, M.R. Hooshmandasl, F. Mohammadi, Appl. Math. Comput. 234, 267 (2014)MathSciNetGoogle Scholar
  55. 55.
    M.H. Heydari, M.R. Hooshmandasl, F. Mohammadi, Adv. Appl. Math. Mech. 6, 247 (2014)MathSciNetCrossRefGoogle Scholar
  56. 56.
    M.H. Heydari, M.R. Hooshmandasl, F.M.M. Ghaini, C. Cattani, Phys. Lett. A 379, 71 (2015)ADSMathSciNetCrossRefGoogle Scholar
  57. 57.
    M.H. Heydari, M.R. Hooshmandasl, F. Mohammadi, C. Cattani, Commun. Nonlinear Sci. Numer. Simulat. 19, 37 (2014)ADSMathSciNetCrossRefGoogle Scholar
  58. 58.
    M.H. Heydari, M.R. Hooshmandasl, F.M.M. Ghaini, C. Cattani, Appl. Math. Comput. 286, 139 (2016)MathSciNetGoogle Scholar
  59. 59.
    C. Cattani, Int. J. Fluid Mech. Res. 5, 1 (2003)Google Scholar
  60. 60.
    C. Cattani, Comp. Math. Appl. 50, 1191 (2005)MathSciNetCrossRefGoogle Scholar
  61. 61.
    C. Cattani, A. Kudreyko, Appl. Math. Comput. 215, 4164 (2010)MathSciNetGoogle Scholar
  62. 62.
    C. Cattani, Math. Modell. Anal. 11, 117 (2006)MathSciNetGoogle Scholar
  63. 63.
    C. Cattani, Math. Prob. Eng. 2008, 164808 (2008)MathSciNetGoogle Scholar
  64. 64.
    C. Cattani, Math. Prob. Eng. 2010, 408418 (2010)MathSciNetGoogle Scholar
  65. 65.
    C. Cattani, Math. Prob. Eng. 2012, 502812 (2012)MathSciNetGoogle Scholar
  66. 66.
    S. Kazem, S. Abbasbandy, S. Kumar, Appl. Math. Model. 37, 5498 (2013)MathSciNetCrossRefGoogle Scholar
  67. 67.
    F. Liu, M.M. Meerschaert, R.J. McGough, P. Zhuang, Q. Liu, Fract. Calc. Appl. Anal. 16, 9 (2013)MathSciNetCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • M. R. Hooshmandasl
    • 1
    • 2
    Email author
  • M. H. Heydari
    • 1
    • 2
  • C. Cattani
    • 3
  1. 1.Faculty of MathematicsYazd UniversityYazdIran
  2. 2.The Laboratory of Quantum Information ProcessingYazd UniversityYazdIran
  3. 3.Engineering School (DEIM)University of TusciaViterboItaly

Personalised recommendations