Advertisement

Neuroplasmonics: From Kretschmann configuration to plasmonic crystals

  • Foozieh Sohrabi
  • Seyedeh Mehri HamidiEmail author
Review

Abstract.

Recently, a worldwide attempt for understanding the functions of brain and nervous system has been made. Hence, various aspects of neuroscience have been investigated through different techniques. Among these techniques, neuroplasmonics as a newborn branch of this science tries to seize the realm of in vitro and in vivo neural imaging, recording and healing. Neuroplasmonics offers advantages comprising rapidity, high sensitivity, biological compatibility, label-free and real-time detection by benefiting from the sensing and thermal characteristics of surface plasmon resonances (SPRs). This paper reviews four main branches of neuroplasmonics comprising prism coupler configurations, the combination of SPR and fluorescence microscopy and methods based on nanorods and plasmonic crystals. For each division, the advantages, disadvantages and the provided facilities will be discussed in detail.

References

  1. 1.
    R.A. Barry et al., Adv. Mater. 21, 2407 (2009)CrossRefGoogle Scholar
  2. 2.
    L.J. Millet et al., Lab Chip 7, 987 (2007)CrossRefGoogle Scholar
  3. 3.
    L.J. Millet et al., Lab Chip 10, 1525 (2010)CrossRefGoogle Scholar
  4. 4.
    H. Zhang, J.N. Hanson Shepherd, R.G. Nuzzo, Soft Matter 6, 2238 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    J.N.H. Shepherd et al., Adv. Funct. Mater. 21, 47 (2011)CrossRefGoogle Scholar
  6. 6.
    J.N. Hanson et al., Lab Chip 9, 122 (2009)CrossRefGoogle Scholar
  7. 7.
    L.E. Corum et al., Langmuir 27, 8316 (2011)CrossRefGoogle Scholar
  8. 8.
    R.V. Beletskiy, Imaging electrical activity of neurons with metamaterial nanosensors, in Research Proposal Supplementary Report (2013)Google Scholar
  9. 9.
    U. Windhorst, H. Johansson, Modern Techniques in Neuroscience Research, 1 edition (Springer-Verlag, Berlin, Heidelberg, 1999)Google Scholar
  10. 10.
    R.N. Holdefer, B.A. Cohen, K.A. Greene, Mov. Disord. 25, 2067 (2010)CrossRefGoogle Scholar
  11. 11.
    V. Sturm et al., J. Chem. Neuroanat. 26, 293 (2003)CrossRefGoogle Scholar
  12. 12.
    M.K. Belmonte et al., J. Neurosci. 24, 9228 (2004)CrossRefGoogle Scholar
  13. 13.
    I.A. Shevelev, Prog. Neurobiol. 56, 269 (1998)CrossRefGoogle Scholar
  14. 14.
    S.A. Kim, S.B. Jun, Exp. Neurobiol. 22, 158 (2013)CrossRefGoogle Scholar
  15. 15.
    S. Antic, D. Zecevic, J. Neurosci. 15, 1392 (1995)Google Scholar
  16. 16.
    S. Antic, G. Major, D. Zecevic, J. Neurophysiol. 82, 1615 (1999)Google Scholar
  17. 17.
    D.A. Dombeck, M. Blanchard-Desce, W.W. Webb, J. Neurosci. 24, 999 (2004)CrossRefGoogle Scholar
  18. 18.
    J.C. Williams, R.L. Rennaker, D.R. Kipke, Brain Res. Protocols 4, 303 (1999)CrossRefGoogle Scholar
  19. 19.
    G. Buzsaki, Nat. Neurosci. 7, 446 (2004)CrossRefGoogle Scholar
  20. 20.
    C.T. Nordhausen, E.M. Maynard, R.A. Normann, Brain Res. 726, 129 (1996)CrossRefGoogle Scholar
  21. 21.
    J. Chang, G. Brewer, B. Wheeler, Biomed. Microdev. 2, 245 (2000)CrossRefGoogle Scholar
  22. 22.
    J. Zhang, T. Atay, A.V. Nurmikko, Nano Lett. 9, 519 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    K. Eom et al., Small 10, 3853 (2014)CrossRefGoogle Scholar
  24. 24.
    J. Wells et al., J. Biomed. Opt. 10, 064003 (2005)ADSCrossRefGoogle Scholar
  25. 25.
    B. Hyoungwon, Extracellular Optical Recording Configuration for Neuronal Action Potential Detection by using Surface Plasmon Resonance: Preliminary Experiment, in Conference Proceedings of the 2nd International IEEE EMBS Conference on Neural Engineering, 2005 (2005)Google Scholar
  26. 26.
    C.D. James et al., IEEE Trans. Biomed. Eng. 51, 1640 (2004)CrossRefGoogle Scholar
  27. 27.
    Y. Nam et al., IEEE Trans. Biomed. Eng. 51, 158 (2004)CrossRefGoogle Scholar
  28. 28.
    Y.Z. Yupu Diao, Nan Qin, Qingpeng Yu, Yangtai Guan, Lu Fan, Min Jiang, Jiayi Zhang, Nano Bull. 1, 120103-1 (2012)Google Scholar
  29. 29.
    R. Biran, D.C. Martin, P.A. Tresco, Exp. Neurol. 195, 115 (2005)CrossRefGoogle Scholar
  30. 30.
    C.S. Bjornsson et al., J. Neural. Eng. 3, 196 (2006)ADSCrossRefGoogle Scholar
  31. 31.
    K. Najafi, J.F. Hetke, IEEE Trans. Biomed. Eng. 37, 474 (1990)CrossRefGoogle Scholar
  32. 32.
    S. Ae Kim et al., Opt. Lett. 33, 914 (2008)ADSCrossRefGoogle Scholar
  33. 33.
    J.H. Lee et al., Nature 465, 788 (2010)ADSCrossRefGoogle Scholar
  34. 34.
    C.T. Moonen et al., Science 250, 53 (1990)ADSCrossRefGoogle Scholar
  35. 35.
    M.A. Franceschini et al., J. Biomed. Opt. 11, 054007 (2006)ADSCrossRefGoogle Scholar
  36. 36.
    B.W. Zeff et al., Proc. Natl. Acad. Sci. 104, 12169 (2007)ADSCrossRefGoogle Scholar
  37. 37.
    J.V. Pardo, P.T. Fox, M.E. Raichle, Nature 349, 61 (1991)ADSCrossRefGoogle Scholar
  38. 38.
    D.A. Benaron et al., J. Cereb. Blood Flow Metab. 20, 469 (2000)CrossRefGoogle Scholar
  39. 39.
    R.B. Tootell et al., Nature 375, 139 (1995)ADSCrossRefGoogle Scholar
  40. 40.
    M.G. Shapiro et al., Nat. Commun. 3, 736 (2012)CrossRefGoogle Scholar
  41. 41.
    A.R. Duke et al., Sci. Rep. 3, 2600 (2013)CrossRefGoogle Scholar
  42. 42.
    S.A. Kim et al., Opt. Lett. 37, 614 (2012)ADSCrossRefGoogle Scholar
  43. 43.
    A.D. Mehta et al., Curr. Opin. Neurobiol. 14, 617 (2004)CrossRefGoogle Scholar
  44. 44.
    B.A. Flusberg et al., Nat. Methods 2, 941 (2005)CrossRefGoogle Scholar
  45. 45.
    A. Bullen, P. Saggau, Biophys. J. 76, 2272 (1999)ADSCrossRefGoogle Scholar
  46. 46.
    K. Svoboda et al., Nature 385, 161 (1997)ADSCrossRefGoogle Scholar
  47. 47.
    S. Venkataramani, Compact semiconductor light-emitting diodes for dynamic imaging of neuronal circuitry, in IEEE Journal of Selected Topics in Quantum Electronics, Vol. 11 (2005) pp. 785--790Google Scholar
  48. 48.
    J.Y. Wu, L.B. Cohen, C.X. Falk, Fast Multisite Optical Measurement of Membrane Potential, with Two Examples, in Fluorescent and Luminescent Probes for Biological Activity, edited by W.T. Mason, Vol. 2, (London Academic Press, 1999) pp. 222--237Google Scholar
  49. 49.
    H. Mutoh et al., Exp. Physiol. 96, 13 (2011)ADSCrossRefGoogle Scholar
  50. 50.
    W. Akemann et al., Sci. Rep. 3, 2231 (2013)CrossRefGoogle Scholar
  51. 51.
    J.Q. Zhang, T. Atay, A.V. Nurmikko, Detection of Neural Cell Activity Using Plasmonic Gold Nanoparticles, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies (Optical Society of America, 2008)Google Scholar
  52. 52.
    T.J. Ebner, G. Chen, Prog. Neurobiol. 46, 463 (1995)CrossRefGoogle Scholar
  53. 53.
    H. Raether, Surface plasmons on smooth and rough surfaces and on gratings (Springer-Verlag, Berlin, 1986)Google Scholar
  54. 54.
    I. Prigogine, S.A. Rice, Advances in chemical physics, edited by I. Prigogine, S.A. Rice (Wiley, New York, 1983)Google Scholar
  55. 55.
    W. Knoll, Annu. Rev. Phys. Chem. 49, 569 (1998)ADSCrossRefGoogle Scholar
  56. 56.
    H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, edited by H. Raether (Springer-Verlag, Berlin, 1988)Google Scholar
  57. 57.
    Y. Huang et al., Opt. Commun. 308, 109 (2013)ADSCrossRefGoogle Scholar
  58. 58.
    J. Homola, Chem. Rev. 108, 462 (2008)CrossRefGoogle Scholar
  59. 59.
    K. Matsubara, S. Kawata, S. Minami, Appl. Spectrosc. 42, 1375 (1988)ADSCrossRefGoogle Scholar
  60. 60.
    L.-M. Zhang, D. Uttamchandani, Electron. Lett. 24, 1469 (1988)CrossRefGoogle Scholar
  61. 61.
    C. Nylander, B. Liedberg, T. Lind, Sensors Actuat. 3, 79 (1982)CrossRefGoogle Scholar
  62. 62.
    J.M. Brockman, B.P. Nelson, R.M. Corn, Annu. Rev. Phys. Chem. 51, 41 (2000)ADSCrossRefGoogle Scholar
  63. 63.
    C. Valsecchi, A.G. Brolo, Langmuir 29, 5638 (2013)CrossRefGoogle Scholar
  64. 64.
    A.-P. Le et al., J. Phys. Chem. B 117, 13069 (2013)CrossRefGoogle Scholar
  65. 65.
    I. Hirata et al., J. Biomed. Mater Res. A 66, 669 (2003)CrossRefGoogle Scholar
  66. 66.
    I.I. Hirata et al., Colloids Surf. B Biointerfaces 18, 285 (2000)CrossRefGoogle Scholar
  67. 67.
    Y. Iwasaki, T. Horiuchi, O. Niwa, Anal. Chem. 73, 1595 (2001)CrossRefGoogle Scholar
  68. 68.
    M. Zhou et al., Biochem. 32, 8193 (1993)CrossRefGoogle Scholar
  69. 69.
    L. Nieba et al., Anal. Biochem. 252, 217 (1997)CrossRefGoogle Scholar
  70. 70.
    R.J. Whelan, R.N. Zare, Anal. Chem. 75, 1542 (2003)CrossRefGoogle Scholar
  71. 71.
    E. Ostuni et al., Langmuir 17, 5605 (2001)CrossRefGoogle Scholar
  72. 72.
    E.A. Smith et al., J. Am. Chem. Soc. 125, 6140 (2003)CrossRefGoogle Scholar
  73. 73.
    M. Kyo, K. Usui-Aoki, H. Koga, Anal. Chem. 77, 7115 (2005)CrossRefGoogle Scholar
  74. 74.
    J. Homola, S.S. Yee, G. Gauglitz, Sensors Actuat. B: Chem. 54, 3 (1999)CrossRefGoogle Scholar
  75. 75.
    B. Johnsson, S. Löfås, G. Lindquist, Anal. Biochem. 198, 268 (1991)CrossRefGoogle Scholar
  76. 76.
    U. Jonsson et al., Biotechniques 11, 620 (1991)Google Scholar
  77. 77.
    J.N. Anker et al., Nat. Mater. 7, 442 (2008)ADSCrossRefGoogle Scholar
  78. 78.
    C.E. Jordan et al., Anal. Chem. 69, 4939 (1997)CrossRefGoogle Scholar
  79. 79.
    S.H. Choi et al., Opt. Laser Technol. 43, 938 (2011)ADSCrossRefGoogle Scholar
  80. 80.
    R.A. Stepnoski et al., Proc. Natl. Acad. Sci. U.S.A. 88, 9382 (1991)ADSCrossRefGoogle Scholar
  81. 81.
    L.B. Cohen, R.D. Keynes, B. Hille, Nature 218, 438 (1968)ADSCrossRefGoogle Scholar
  82. 82.
    A.J. Foust, D.M. Rector, Neuroscience 145, 887 (2007)CrossRefGoogle Scholar
  83. 83.
    Y. Teramura, Y. Arima, H. Iwata, Anal. Biochem. 357, 208 (2006)CrossRefGoogle Scholar
  84. 84.
    W.L. Rutten, Annu. Rev. Biomed. Eng. 4, 407 (2002)CrossRefGoogle Scholar
  85. 85.
    S. Oh, J. Song, S. Kim, Biotechnol. Bioprocess Eng. 8, 252 (2003)CrossRefGoogle Scholar
  86. 86.
    A. Baba et al., ACS Appl. Mater. Interfaces 2, 2347 (2010)CrossRefGoogle Scholar
  87. 87.
    X. Shan et al., Science 327, 1363 (2010)ADSCrossRefGoogle Scholar
  88. 88.
    A. Dahlin et al., Anal. Bioanal. Chem. 402, 1773 (2012)CrossRefGoogle Scholar
  89. 89.
    P. Juskova, F. Foret, J. Separat. Sci. 34, 2779 (2011)CrossRefGoogle Scholar
  90. 90.
    D. Albutt, M.R. Alexander, N.A. Russell, Growing neural networks on gold surface plasmon resonance imaging sensors, in Functional Optical Imaging (FOI) (2011) DOI:10.1109/FOI.2011.6154846
  91. 91.
    H.J. Lee, D. Nedelkov, R.M. Corn, Anal. Chem. 78, 6504 (2006)CrossRefGoogle Scholar
  92. 92.
    C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley and Sons, New York, 1983)Google Scholar
  93. 93.
    U.V. Kreibig, M., Optical Properties of Metal Clusters, Vol. 25 (Springer, Berlin, 1995)Google Scholar
  94. 94.
    K.A. Willets, R.P. Van Duyne, Annu. Rev. Phys. Chem. 58, 267 (2007)ADSCrossRefGoogle Scholar
  95. 95.
    S.M. Hamidi, H. Goudarzi, S. Sadeghi, J. Superconduct. Novel Magn. 28, 1565 (2015)CrossRefGoogle Scholar
  96. 96.
    B. Ran, S.G. Lipson, Opt. Express 14, 5641 (2006)ADSCrossRefGoogle Scholar
  97. 97.
    S. Bahar et al., Neuroreport 17, 499 (2006)CrossRefGoogle Scholar
  98. 98.
    A.M. Packer, B. Roska, M. Hausser, Nat. Neurosci. 16, 805 (2013)CrossRefGoogle Scholar
  99. 99.
    M.F. Swiontkowski, Iowa Orthopaedic J. 11, 119 (1991)Google Scholar
  100. 100.
    R.D. Frostig et al., Proc. Natl. Acad. Sci. U.S.A. 87, 6082 (1990)ADSCrossRefGoogle Scholar
  101. 101.
    D. Malonek, A. Grinvald, Science 272, 551 (1996)ADSCrossRefGoogle Scholar
  102. 102.
    M. Lazebnik et al., Opt. Lett. 28, 1218 (2003)ADSCrossRefGoogle Scholar
  103. 103.
    J. Viventi et al., Nat. Neurosci. 14, 1599 (2011)CrossRefGoogle Scholar
  104. 104.
    N. Díaz Herrera et al., Opt. Lasers Eng. 49, 1065 (2011)CrossRefGoogle Scholar
  105. 105.
    C. Grienberger, A. Konnerth, Neuron 73, 862 (2012)CrossRefGoogle Scholar
  106. 106.
    G. Cao et al., Cell 154, 904 (2013)CrossRefGoogle Scholar
  107. 107.
    A.S. Curtis, Eur. Cell Mater. 1, 59 (2001)CrossRefGoogle Scholar
  108. 108.
    G. Pauletti et al., J. Clin. Oncol. 18, 3651 (2000)CrossRefGoogle Scholar
  109. 109.
    K.D. Costa, Dis. Markers 19, 139 (2003)CrossRefGoogle Scholar
  110. 110.
    J.T. Wessels et al., Cytometry Part A 71A, 542 (2007)CrossRefGoogle Scholar
  111. 111.
    Y. Chikara et al., Jpn. J. Appl. Phys. 51, 06FK10 (2012)CrossRefGoogle Scholar
  112. 112.
    B.N.G. Giepmans et al., Science 312, 217 (2006)ADSCrossRefGoogle Scholar
  113. 113.
    C.D. Hu, T.K. Kerppola, Nat. Biotechnol. 21, 539 (2003)CrossRefGoogle Scholar
  114. 114.
    S. Zhang, C. Ma, M. Chalfie, Cell 119, 137 (2004)CrossRefGoogle Scholar
  115. 115.
    K. Tawa et al., Opt. Express 16, 9781 (2008)ADSCrossRefGoogle Scholar
  116. 116.
    X. Cui et al., Adv. Funct. Mater. 20, 945 (2010)CrossRefGoogle Scholar
  117. 117.
    A. Naoko et al., Jpn. J. Appl. Phys. 48, 06FH17 (2009)Google Scholar
  118. 118.
    J.M. Choi et al., Opt. Express 22, 5977 (2014)ADSCrossRefGoogle Scholar
  119. 119.
    M.G. Moharam et al., J. Opt. Soc. Am. A 12, 1077 (1995)ADSCrossRefGoogle Scholar
  120. 120.
    J. Wells et al., Opt. Lett. 30, 504 (2005)ADSCrossRefGoogle Scholar
  121. 121.
    J. Wells et al., J. Neurosci. Methods 163, 326 (2007)CrossRefGoogle Scholar
  122. 122.
    A.D. Izzo et al., J. Biomed. Opt. 12, 021008 (2007)ADSCrossRefGoogle Scholar
  123. 123.
    C.P. Richter et al., Hear Res. 242, 42 (2008)CrossRefGoogle Scholar
  124. 124.
    C.P. Richter et al., Laser Photon. Rev. 5, 68 (2011)CrossRefGoogle Scholar
  125. 125.
    J. Wells et al., Biophys. J. 93, 2567 (2007)ADSCrossRefGoogle Scholar
  126. 126.
    E.J. Katz et al., Neuroreport 21, 662 (2010)CrossRefGoogle Scholar
  127. 127.
    C. Paviolo et al., Biotechnol. Bioeng. 110, 2277 (2013)CrossRefGoogle Scholar
  128. 128.
    C.F. Bohren, Am. J. Phys. 51, 323 (1983)ADSCrossRefGoogle Scholar
  129. 129.
    L.R. Hirsch et al., Proc. Natl. Acad. Sci. U.S.A. 100, 13549 (2003)ADSCrossRefGoogle Scholar
  130. 130.
    J. Homola, Anal. Bioanal. Chem. 377, 528 (2003)CrossRefGoogle Scholar
  131. 131.
    N. Nath, A. Chilkoti, Anal. Chem. 74, 504 (2002)CrossRefGoogle Scholar
  132. 132.
    M.E. Stewart et al., Proc. Natl. Acad. Sci. U.S.A. 103, 17143 (2006)ADSCrossRefGoogle Scholar
  133. 133.
    W.L. Barnes, A. Dereux, T.W. Ebbesen, Nature 424, 824 (2003)ADSCrossRefGoogle Scholar
  134. 134.
    Q. Xu et al., Angew. Chem. Int. Edit. 45, 3631 (2006)CrossRefGoogle Scholar
  135. 135.
    Y. Sun, Y. Xia, Anal. Chem. 74, 5297 (2002)CrossRefGoogle Scholar
  136. 136.
    L.J. Sherry et al., Nano Lett. 5, 2034 (2005)ADSCrossRefGoogle Scholar
  137. 137.
    C.R. Yonzon et al., J. Am. Chem. Soc. 126, 12669 (2004)CrossRefGoogle Scholar
  138. 138.
    T. Rindzevicius et al., Nano Lett. 5, 2335 (2005)ADSCrossRefGoogle Scholar
  139. 139.
    X. Wei et al., Appl. Phys. Lett. 97, 011904 (2010)ADSCrossRefGoogle Scholar
  140. 140.
    S.H. Lee et al., Langmuir 25, 13685 (2009)CrossRefGoogle Scholar
  141. 141.
    M. Najiminaini et al., Plasmonics 8, 217 (2013)CrossRefGoogle Scholar
  142. 142.
    N.A. Abu Hatab, J.M. Oran, M.J. Sepaniak, ACS Nano 2, 377 (2008)CrossRefGoogle Scholar
  143. 143.
    J. Henzie et al., J. Phys. Chem. B 110, 14028 (2006)CrossRefGoogle Scholar
  144. 144.
    D. Chanda et al., Nat. Commun. 2, 479 (2011)CrossRefGoogle Scholar
  145. 145.
    Y.S. Do et al., Adv. Opt. Mater. 1, 133 (2013)ADSCrossRefGoogle Scholar
  146. 146.
    I. Puscasu et al., J. Appl. Phys. 98, 013531 (2005)ADSCrossRefGoogle Scholar
  147. 147.
    M.E. Stewart et al., Proc. Natl. Acad. Sci. U.S.A. 103, 17143 (2006)ADSCrossRefGoogle Scholar
  148. 148.
    V. Malyarchuk et al., Appl. Phys. Lett. 90, 203113 (2007)ADSCrossRefGoogle Scholar
  149. 149.
    J. Yao et al., Angew. Chem. Int. Edit. 47, 5013 (2008)CrossRefGoogle Scholar
  150. 150.
    A.J. Baca et al., Appl. Phys. Lett. 94, 243109 (2009)ADSCrossRefGoogle Scholar
  151. 151.
    S.M. Williams et al., J. Phys. Chem. B 108, 11833 (2004)CrossRefGoogle Scholar
  152. 152.
    A.G. Brolo et al., Nano Lett. 4, 2015 (2004)ADSCrossRefGoogle Scholar
  153. 153.
    A.G. Brolo et al., Langmuir 20, 4813 (2004)CrossRefGoogle Scholar
  154. 154.
    M.J. Levene et al., Science 299, 682 (2003)ADSCrossRefGoogle Scholar
  155. 155.
    J. Henzie et al., Annu. Rev. Phys. Chem. 60, 147 (2009)ADSCrossRefGoogle Scholar
  156. 156.
    J. Maria et al., J. Phys. Chem. C 113, 10493 (2009)CrossRefGoogle Scholar
  157. 157.
    T.W. Ebbesen et al., Nature 391, 667 (1998)ADSCrossRefGoogle Scholar
  158. 158.
    G. Karpati et al., Trends Neurosci. 19, 49 (1996)CrossRefGoogle Scholar
  159. 159.
    G. Popescu, Nanobiophotonics, 1 edition (McGraw-Hill, New York, 2010)Google Scholar
  160. 160.
    I. Roy et al., Proc. Natl. Acad. Sci. U.S.A. 102, 279 (2005)ADSCrossRefGoogle Scholar
  161. 161.
    H. Tamaru et al., Appl. Phys. Lett. 80, 1826 (2002)ADSCrossRefGoogle Scholar
  162. 162.
    B. Lamprecht et al., Phys. Rev. Lett. 83, 4421 (1999)ADSCrossRefGoogle Scholar
  163. 163.
    T. Atay, J.-H. Song, A.V. Nurmikko, Nano Lett. 4, 1627 (2004)ADSCrossRefGoogle Scholar
  164. 164.
    S. Lal, S. Link, N.J. Halas, Nat. Photon. 1, 641 (2007)ADSCrossRefGoogle Scholar
  165. 165.
    S. Lal et al., Nano Lett. 6, 2338 (2006)ADSCrossRefGoogle Scholar
  166. 166.
    C.E. Talley et al., Nano Lett. 5, 1569 (2005)ADSCrossRefGoogle Scholar
  167. 167.
    T.A. Taton, C.A. Mirkin, R.L. Letsinger, Science 289, 1757 (2000)ADSCrossRefGoogle Scholar
  168. 168.
    H. Liao, C.L. Nehl, J.H. Hafner, Nanomedicine 1, 201 (2006)CrossRefGoogle Scholar
  169. 169.
    A.J. Haes et al., J. Am. Chem. Soc. 128, 10905 (2006)CrossRefGoogle Scholar
  170. 170.
    E.J. Smythe, E. Cubukcu, F. Capasso, Opt. Express 15, 7439 (2007)ADSCrossRefGoogle Scholar
  171. 171.
    S. Venkataramani et al., J. Neurosci. Methods 160, 5 (2007)CrossRefGoogle Scholar
  172. 172.
    J.D.E. McIntyre, Surf. Sci. 37, 658 (1973)ADSCrossRefGoogle Scholar
  173. 173.
    V. Lioubimov et al., Appl. Opt. 43, 3426 (2004)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Magneto-plasmonic Lab, Laser and Plasma Research InstituteShahid Beheshti UniversityTehranIran

Personalised recommendations