The sciences and applications of the Electron LINAC-driven neutron source in Argentina

  • J. R. GranadaEmail author
  • R. E. Mayer
  • J. Dawidowski
  • J. R. Santisteban
  • F. Cantargi
  • J. J. Blostein
  • L. A. Rodríguez Palomino
  • A. Tartaglione
Regular Article
Part of the following topical collections:
  1. Focus Point on Compact accelerator-driven neutron sources


The Neutron Physics group at Centro Atómico Bariloche (CNEA, Argentina) has evolved for more than forty five years around a small 25MeV linear electron accelerator. It constitutes our compact accelerator-driven neutron source (CANS), which is dedicated to the use and development of neutronic methods to tackle problems of basic sciences and technological applications. Its historical first commitment has been the determination of the total cross sections of materials as a function of neutron energy by means of transmission experiments for thermal and sub-thermal neutrons. This also allowed testing theoretical models for the generation of scattering kernels and cross sections. Through the years, our interests moved from classic pulsed neutron diffraction, which included the development of high-precision methods for the determination of very low hydrogen content in metals, towards deep inelastic neutron scattering (DINS), a powerful tool for the determination of atomic momentum distribution in condensed matter. More recently non-intrusive techniques aimed at the scanning of large cargo containers have started to be developed with our CANS, testing the capacity and limitations to detect special nuclear material and dangerous substances. Also, the ever-present “bremsstrahlung” radiation has been recognized and tested as a useful complement to instrumental neutron activation, as it permits to detect other nuclear species through high-energy photon activation. The facility is also used for graduate and undergraduate students’ experimental work within the frame of Instituto Balseiro Physics and Nuclear Engineering courses of study, and also MSc and PhD theses work.


  1. 1.
    F. Kropff, J.R. Latorre, J.R. Granada, C. Castro Madero, Nuclear Data Section, IAEA, EXFOR 30283 (Vienna, 1974)Google Scholar
  2. 2.
    J.R. Granada, Phys. Rev. B 32, 7555 (1985)ADSCrossRefGoogle Scholar
  3. 3.
    G. Sibona, R.E. Mayer, V.H. Gillette, C. Bonetto, J.R. Granada, Ann. Nucl. Energy 18, 689 (1991)CrossRefGoogle Scholar
  4. 4.
    F. Cantargi, J.J. Blostein, L. Torres, J.R. Granada, Nucl. Instrum. Methods B 248, 340 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    F. Kropff, J.R. Granada, R.E. Mayer, L.A. Remez, Atomkernenergie 31, 42 (1978)Google Scholar
  6. 6.
    F. Kropff, J.R. Granada, CRIPO, A Computer Code to describe the Total Cross Section of Polycrystalline Materials, unpublished Report (1975)Google Scholar
  7. 7.
    A. Steuwer et al., J. Appl. Crystall. 36, 1159 (2003)CrossRefGoogle Scholar
  8. 8.
    J.R. Santisteban, J.R., L. Edwards, V. Stelmukh, Physica B 385, 636 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    S. Vogel et al., Mater. Sci. Eng. A 333, 1 (2002)CrossRefGoogle Scholar
  10. 10.
    S.W. Lovesey, Theory of Neutron Scattering from Condensed Matter (Clarendon Press, Oxford, 1984)Google Scholar
  11. 11.
    J.R. Granada, Z. Naturforsch. 39a, 1160 (1984)ADSGoogle Scholar
  12. 12.
    J. Dawidowski, J.R. Santisteban, J.R. Granada, Physica B 271, 212 (1999)ADSCrossRefGoogle Scholar
  13. 13.
    L. Koester et al., Physica B 137, 282 (1986)CrossRefGoogle Scholar
  14. 14.
    Y.A. Alexandrov, Sov. J. Nucl. Phys. 37, 149 (1983)Google Scholar
  15. 15.
    J.R. Granada et al., Physica B 190, 259 (1993)ADSCrossRefGoogle Scholar
  16. 16.
    F. Kropff, Nucl. Instrum. Methods Phys. Res. A 245, 125 (1986)ADSCrossRefGoogle Scholar
  17. 17.
    G.J. Cuello, A. Fernandez Guillermet, G.B. Grad, R.E. Mayer, J.R. Granada, J. Nucl. Mat. 218, 236 (1995)ADSCrossRefGoogle Scholar
  18. 18.
    G.B. Grad, J.J. Pieres, A. Fernandez Guillermet, G.J. Cuello, R.E. Mayer, J.R. Granada, Z. Metallk. 86, 395 (1995)Google Scholar
  19. 19.
    J.R. Granada, J.R. Santisteban, R.E. Mayer, Physica B 213, 1005 (1995)ADSCrossRefGoogle Scholar
  20. 20.
    J.R. Santisteban, J.R. Granada, R.E. Mayer, J. Neutron Res. 7, 1 (1998)CrossRefGoogle Scholar
  21. 21.
    J.J. Blostein, J. Dawidowski, J.R. Granada, R.E. Mayer, Appl. Phys. A, Mater. Sci. Process. Suppl. 74, 157 (2002)ADSCrossRefGoogle Scholar
  22. 22.
    L.A. Rodríguez Palomino, J.J. Blostein, J. Dawidowski, Nucl. Instrum. Methods A 646, 142 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    M. Krzystyniak, A.G. Seel, S.E. Richards, M.J. Gutmann, F. Fernández-Alonso, J. Phys.: Conf. Ser. 571, 012002 (2014)ADSGoogle Scholar
  24. 24.
    J.J. Blostein, L.A. Rodríguez Palomino, J. Dawidowski, Phys. Rev. Lett. 102, 097401 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    C.A. Chatzidimitriou-Dreismann, T. Abdul Redah, R.M.F. Streffer, J. Mayers, Phys. Rev. Lett. 79, 2839 (1997)ADSCrossRefGoogle Scholar
  26. 26.
    J.J. Blostein, J. Dawidowski, S.A. Ibáñez, J.R. Granada, Phys. Rev. Lett. 90, 105302 (2003)ADSCrossRefGoogle Scholar
  27. 27.
    A. Tartaglione, F. Di Lorenzo, R.E. Mayer, Nucl. Instrum. Methods B 267, 2453 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    R.E. Mayer, A. Tartaglione, F. Di Lorenzo, C. SepulvedaSoza, M. Schneebeli, P. D’Avanzo, L. Capararo, Active Neutron Interrogation Approach to Detect Special Nuclear Material in Containers, in Nuclear Research Applications and Utilization of Accelerators - Proceedings of an International Topical Meeting Held in Vienna, Austria, 4--8 May 2009, Vienna, Satellite Meeting V Neutron Based Techniques for the Detection of Illicit Materials and Explosives, No. CN-173 (IAEA, 2009) p. 140,
  29. 29.
    A. Tartaglione, J.J. Blostein, R.E. Mayer, Appl. Radiat. Isotop. 67, 1711 (2009)CrossRefGoogle Scholar
  30. 30.
    J.E. Draper, C.A. Fenstermacher, H.L. Schultz, Phys. Rev. 111, 906 (1958)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • J. R. Granada
    • 1
    Email author
  • R. E. Mayer
    • 1
  • J. Dawidowski
    • 1
  • J. R. Santisteban
    • 1
  • F. Cantargi
    • 1
  • J. J. Blostein
    • 1
  • L. A. Rodríguez Palomino
    • 1
  • A. Tartaglione
    • 1
  1. 1.Neutron Physics DepartmentCentro Atómico Bariloche and Instituto Balseiro Comisión Nacional de Energía AtómicaBarilocheArgentina

Personalised recommendations