Advertisement

Linear analysis of a backward wave oscillator with triangular corrugated slow wave structure

  • Md. Ghulam Saber
  • Rakibul Hasan Sagor
  • Md. Ruhul Amin
Regular Article

Abstract.

In this work, a backward wave oscillator (BWO) with triangularly corrugated periodic metallic slow wave structure (TrCSWS) driven by an infinitely thin annular electron beam is studied using linear theory. The electron beam is assumed to be guided by a strong magnetic field. The triangular axial profile of the SWS is approximated by a Fourier series in order to apply the linear Rayleigh-Fourier (R-F) theory that has long been used in the theoretical analysis of BWOs with sinusoidally corrugated SWS (SCSWS). The dispersion equation for various beam parameters has been solved and the temporal growth rate (TGR) of the electromagnetic wave for the fundamental \( TM_{01}\) mode is calculated numerically. The TGR values for different beam parameters have been compared with those of the BWO with SCSWS, semi-circularly corrugated SWS (SCCSWS) and trapezoidally corrugated SWS (TCSWS). In order to compare the TGR values, the amplitude of corrugation of the TrCSWS is varied so that its dispersion curve of \( TM_{01}\) mode almost coincides with that of the SCSWS and TCSWS. The study reveals that the performance (in terms of TGR) of the proposed BWO with TrCSWS is comparable to that of other BWOs with SCSWS and TCSWS for the same set of beam parameters and it provides significantly better performance than SCCSWS. So, the proposed TrCSWS that can easily be constructed may replace SCSWS, SCCSWS or TCSWS as their viable alternative.

References

  1. 1.
    M.R. Amin, K. Ogura, IEEE Trans. Plasma Sci. 41, 2257 (2013)ADSCrossRefGoogle Scholar
  2. 2.
    M.R. Amin et al., IEEE Trans. Plasma Sci. 42, 1495 (2014)MathSciNetCrossRefGoogle Scholar
  3. 3.
    R.A. Kehs et al., IEEE Trans. Plasma Sci. 13, 559 (1985)ADSCrossRefGoogle Scholar
  4. 4.
    J.A. Swegle et al., Phys. Fluids 28, 2882 (1985)ADSCrossRefGoogle Scholar
  5. 5.
    F.D. Kantrowitz, E.A. Adler, IEEE Trans. Electron. Dev. 37, 2619 (1990)ADSCrossRefGoogle Scholar
  6. 6.
    B. Levush et al., IEEE Trans. Plasma Sci. 20, 263 (1992)ADSCrossRefGoogle Scholar
  7. 7.
    M.R. Amin et al., IEEE Trans. Microwave Theory Techn. 43, 815 (1995)ADSCrossRefGoogle Scholar
  8. 8.
    K. Minami et al., IEEE Trans. Plasma Sci. 30, 1134 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    J.J. Barroso et al., IEEE Trans. Plasma Sci. 31, 752 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    M. Nejati, B. Shokri, IEEE Trans. Plasma Sci. 40, 3029 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    S. Bugaev et al., IEEE Trans. Plasma Sci. 18, 525 (1990)ADSCrossRefGoogle Scholar
  12. 12.
    V. Bratman et al., Tech. Phys. 56, 269 (2011)CrossRefGoogle Scholar
  13. 13.
    A.V. Gunin et al., IEEE Trans. Plasma Sci. 26, 326 (1998)ADSCrossRefGoogle Scholar
  14. 14.
    J. Swegle et al., IEEE Trans. Plasma Sci. 21, 714 (1993)ADSCrossRefGoogle Scholar
  15. 15.
    Y. Carmel et al., IEEE Trans. Plasma Sci. 18, 497 (1990)ADSCrossRefGoogle Scholar
  16. 16.
    L.D. Moreland et al., IEEE Trans. Plasma Sci. 22, 554 (1994)ADSCrossRefGoogle Scholar
  17. 17.
    X. Zheng et al., J. Phys. Soc. Jpn. 64, 1402 (1995)ADSCrossRefGoogle Scholar
  18. 18.
    O. Kazuo et al., J. Korean Phys. Soc. 59, 3555 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    M.G. Saber et al., Chin. Phys. Lett. 33, 018401 (2016)CrossRefGoogle Scholar
  20. 20.
    R.H. Sagor et al., Eur. Phys. J. AP 71, 30801 (2015)CrossRefGoogle Scholar
  21. 21.
    M.G. Saber et al., Eur. Phys. J. D 69, 1 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    M.G. Saber et al., Eur. Phys. J. AP 70, 20801 (2015)CrossRefGoogle Scholar
  23. 23.
    R. Amin et al., Proc.-Social Behav. Sci. 195, 2548 (2015)CrossRefGoogle Scholar
  24. 24.
    M. Amin, K. Ogura, Microwaves Antennas Propag., IET 1, 575 (2007)CrossRefGoogle Scholar
  25. 25.
    Y. Tang et al., IEEE Trans. Plasma Sci. 40, 3552 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    J.S. Hummelt et al., IEEE Trans. Plasma Sci. 42, 930 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    T. Watanabe et al., Phys. Rev. E 69, 056606 (2004)ADSCrossRefGoogle Scholar
  28. 28.
    H. Yamazaki et al., J. Plasma Fusion Res. 6, 719 (2004)Google Scholar
  29. 29.
    Y. Carmel et al., Phys. Fluids B: Plasma Phys. 4, 2286 (1992)CrossRefGoogle Scholar
  30. 30.
    W. Main et al., IEEE Trans. Plasma Sci. 22, 566 (1994)ADSCrossRefGoogle Scholar
  31. 31.
    J.M. Butler et al., IEEE Trans. Plasma Sci. 18, 490 (1990)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Md. Ghulam Saber
    • 1
  • Rakibul Hasan Sagor
    • 1
  • Md. Ruhul Amin
    • 1
  1. 1.Department of Electrical and Electronic EngineeringIslamic University of Technology (IUT)GazipurBangladesh

Personalised recommendations