Advertisement

Nonlinear supercoherent states and geometric phases for the supersymmetric harmonic oscillator

  • Erik Díaz-Bautista
  • David J. Fernández Cabrera
Regular Article

Abstract.

Nonlinear supercoherent states, which are eigenstates of nonlinear deformations of the Kornbluth-Zypman annihilation operator for the supersymmetric harmonic oscillator, will be studied. They turn out to be expressed in terms of nonlinear coherent states, associated to the corresponding deformations of the standard annihilation operator. We will discuss as well the Heisenberg uncertainty relation for a special particular case, in order to compare our results with those obtained for the Kornbluth-Zypman linear supercoherent states. As the supersymmetric harmonic oscillator executes an evolution loop, such that the evolution operator becomes the identity at a certain time, thus the linear and nonlinear supercoherent states turn out to be cyclic and the corresponding geometric phases will be evaluated.

References

  1. 1.
    J. Wess, B. Zumino, Nucl. Phys. B 70, 39 (1974)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    E. Witten, Nucl. Phys. B 188, 513 (1981)ADSCrossRefGoogle Scholar
  3. 3.
    C. Aragone, F. Zypman, J. Phys. A: Math. Gen. 19, 2267 (1986)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Y. Bérubé-Lauzière, V. Hussin, J. Phys. A: Math. Gen. 26, 6271 (1993)ADSCrossRefGoogle Scholar
  5. 5.
    M. Kornbluth, F. Zypman, J. Math. Phys. 54, 012101 (2013)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    R.J. Glauber, Phys. Rev. Lett. 10, 84 (1963)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    R.J. Glauber, Phys. Rev. 130, 2529 (1963)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    R.J. Glauber, Phys. Rev. 131, 2766 (1963)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    R.J. Glauber, Quantum Optics and Electronics, edited by C. deWitt, A. Blandin, C. Cohen-Tannoudji (Gordon and Breach, New York, 1965)Google Scholar
  10. 10.
    Y.I. Granovoskii, I.M. Lutzenko, A.S. Zhedanov, Ann. Phys. 217, 1 (1992)ADSCrossRefGoogle Scholar
  11. 11.
    L. Vinet, P. Letourneau, Ann. Phys. 243, 144 (1995)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    G. Junker, P. Roy, Phys. Lett. A 232, 155 (1997)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    G. Junker, P. Roy, Phys. Lett. A 257, 113 (1999)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    V.P. Karassiov, J. Phys. A: Math. Gen. 27, 153 (1994)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    B. Mielnik, Rep. Math. Phys. 12, 331 (1977)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    B. Mielnik, J. Math. Phys. 27, 2290 (1986)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    B. Mielnik, Lett. Math. Phys. 12, 49 (1986)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    D.J. Fernández, B. Mielnik, J. Math. Phys. 35, 2083 (1994)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    D.J. Fernández, Nuovo Cimento B 107, 885 (1992)ADSCrossRefGoogle Scholar
  20. 20.
    D.J. Fernández, Int. J. Theor. Phys. 33, 2037 (1994)CrossRefGoogle Scholar
  21. 21.
    D.J. Fernández, SIGMA 8, 041 (2012)Google Scholar
  22. 22.
    K.B. Wolf, J. Phys.: Conf. Ser. 624, 012010 (2015)ADSGoogle Scholar
  23. 23.
    M.V. Berry, Proc. R. Soc. A 392, 45 (1984)ADSCrossRefGoogle Scholar
  24. 24.
    Y. Aharonov, J. Anandan, Phys. Rev. Lett. 58, 1593 (1987)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    E. Layton, Y. Huang, S.I. Chu, Phys. Rev. A 41, 42 (1990)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    D.J. Moore, G.E. Stedman, J. Phys. A: Math. Gen. 23, 2049 (1990)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    D.J. Moore, Phys. Rep. 210, 1 (1991)ADSCrossRefGoogle Scholar
  28. 28.
    D.J. Fernández C., L.M. Nieto, M.A. del Olmo, M. Santander, J. Phys. A: Math. Gen. 25, 5151 (1992)ADSCrossRefGoogle Scholar
  29. 29.
    D.J. Fernández C., M.A. del Olmo, M. Santander, J. Phys. A: Math. Gen. 25, 6409 (1992)ADSCrossRefGoogle Scholar
  30. 30.
    D.J. Fernández C., N. Bretón, Europhys. Lett. 21, 147 (1993)ADSCrossRefGoogle Scholar
  31. 31.
    A.N. Seleznyova, J. Phys. A: Math. Gen. 26, 981 (1993)ADSCrossRefGoogle Scholar
  32. 32.
    J.C. Solem, L.C. Biedenharn, Found. Phys. 23, 185 (1993)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    P. Campos, J.L. Lucio, M. Vargas, Phys. Lett. A 182, 217 (1993)ADSCrossRefGoogle Scholar
  34. 34.
    M. Dennis, S. Popescu, L. Vaidman (Editors), Quantum Phases: 50 years of the Aharonov-Bohm effect and 25 years of the Berry phase, in Journal of Physics A: Mathematical and Theoretical, Vol. 43, number 35 (IOP Science, 2010)Google Scholar
  35. 35.
    V.I. Man’ko, G. Marmo, E.C.G. Sudarshan, F. Zaccaria, Phys. Scr. 55, 528 (1997)ADSCrossRefGoogle Scholar
  36. 36.
    B. Roy, P. Roy, J. Opt. B: Quantum Semiclass. Opt. 2, 65 (2000)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    V.V. Dodonov, J. Opt. B: Quantum Semiclass. Opt. 4, R1 (2002)ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    F. Hong-Yi, C. Hai-Ling, Commun. Theor. Phys. 37, 655 (2002)CrossRefGoogle Scholar
  39. 39.
    S.S. Mizrahi, J.P. Camargo Lima, V.V. Dodonov, J. Phys. A: Math. Gen. 37, 3707 (2004)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    D.J. Fernández, V. Hussin, L.M. Nieto, J. Phys. A: Math. Gen. 27, 3547 (1994)ADSCrossRefGoogle Scholar
  41. 41.
    V.V. Dodonov, I.A. Malkin, V.I. Man’ko, Physica 72, 597 (1974)ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    S. Mancini, V.I. Man’ko, Europhys. Lett. 54, 586 (2001)ADSCrossRefGoogle Scholar
  43. 43.
    P. Aniello, V. Man’ko, G. Marmo, S. Solimeno, F. Zaccaria, J. Opt. B: Quantum Semiclass. Opt. 2, 718 (2000)ADSMathSciNetCrossRefGoogle Scholar
  44. 44.
    D.J. Fernández, V. Hussin, J. Phys. A: Math. Gen. 32, 3603 (1999)ADSCrossRefGoogle Scholar
  45. 45.
    J.M. Carballo, D.J. Fernández, J. Negro, L.M. Nieto, J. Phys. A: Math. Gen. 37, 10349 (2004)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Erik Díaz-Bautista
    • 1
  • David J. Fernández Cabrera
    • 1
  1. 1.Physics DepartmentMexico CityMexico

Personalised recommendations