Advertisement

SPES and the neutron facilities at Laboratori Nazionali di Legnaro

  • L. SilvestrinEmail author
  • D. Bisello
  • J. Esposito
  • P. Mastinu
  • G. Prete
  • J. Wyss
Regular Article
Part of the following topical collections:
  1. Focus Point on Compact accelerator-driven neutron sources

Abstract.

The SPES Radioactive Ion Beam (RIB) facility, now in the construction phase at INFN-LNL, has the aim to provide high-intensity and high-quality beams of neutron-rich nuclei for nuclear physics research as well as to develop an interdisciplinary research center based on the cyclotron proton beam. The SPES system is based on a dual-exit high-current cyclotron, with tunable proton beam energy 35-70MeV and 0.20-0.75mA. The first exit is used as proton driver to supply an ISOL system with an UCx Direct Target able to sustain a power of 10kW. The expected fission rate in the target is of the order of \( 10^{13}\) fissions per second. The exotic isotopes will be re-accelerated by the ALPI superconducting LINAC at energies of 10 A MeV and higher, for masses around \( A=130\) amu, with an expected beam intensity of \( 10^7\) - \( 10^9\) pps. The second exit will be used for applied physics: radioisotope production for medicine and neutrons for material studies. Fast neutron spectra will be produced by the proton beam interaction with a conversion target. A production rate in excess of \( 10^{14}\) n/s can be achieved: this opens up the prospect of a high-flux neutron irradiation facility (NEPIR) to produce both discrete and continuous energy neutrons. A direct proton beam line is also envisaged. NEPIR and the direct proton line would dramatically increase the wide range of irradiation facilities presently available at LNL. We also present LENOS, a proposed project dedicated to accurate neutron cross-sections measurements using intense, well-characterized, broad energy neutron beams. Other activities already in operation at LNL are briefly reviewed: the SIRAD facility for proton and heavy-ion irradiation at the TANDEM-ALPI accelerator and the BELINA test facility at CN van de Graaff accelerator.

Keywords

Proton Beam Neutron Beam Neutron Spectrum Linear Energy Transfer Soft Error 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    G. Prete et al., EPJ Web of Conferences 66, 11030 (2014)CrossRefGoogle Scholar
  2. 2.
    T. Lamy et al., Rev. Sci. Instrum. 75, 1624 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    A. Dainelli et al., Nucl. Instrum. Methods A 382, 100 (1996)ADSCrossRefGoogle Scholar
  4. 4.
    J. Esposito, The LARAMED project at INFN Legnaro National labs, poster contribution to NRC-8EuCheMS International Conference on Nuclear and Radiochemistry, September 2012, Como (Italy), https://indico.cern.ch/event/183405/session/26/contribution/69
  5. 5.
    J. Esposito, The IFMIF EVEDA Low Power Beam Dump (LPBD) Design for LIPAc commissioning tests, LNL annual report 2014Google Scholar
  6. 6.
    JEDEC, Measurement and reporting of alpha particle and terrestrial cosmic ray-induced soft errors in semiconductor devices, JEDEC Standard JESD89A (2006) available at: http://www.jedeq.org/
  7. 7.
    S. Kamada, T. Itoga, Y. Unno, W. Takahashi, T. Oishi, M. Baba, Measurement of energy-angular neutron distribution of ^7Li, ^9Be(p,nx) reaction at $E_p=70$MeV and 11MeV, in Proceedings of International Conference on Nuclear Data for Science and Technology (2010)Google Scholar
  8. 8.
    R. Nolte et al., Nucl. Instrum. Methods A 476, 369 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    J.M. Sisterson et al., Nucl. Instrum. Methods B 240, 617 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    S. Pomp, D.T. Barlett, S. Mayer, G. Reitz, S. Röttger, M. Silari, F.D. Smit, H. Vincke, H. Yasuda, High-energy quasi-monoenergetic neutron fields: existing facilities and future needs, EURADOS Report 2013-02Google Scholar
  11. 11.
    D. Bisello, J. Esposito, P. Mastinu, G. Prete, L. Silvestrin, J. Wyss, Phys. Proc. 60, 271 (2014)CrossRefGoogle Scholar
  12. 12.
    D.B. Pelowitz, M.R. James, G.W. McKinney, J.W. Durkee, MCNPX 2.7.A Extensions (LANL, 2008)Google Scholar
  13. 13.
    HeatWave Labs model HWEG-1079, provided by Atlair TechnologiesGoogle Scholar
  14. 14.
    C. Ceballos, J. Esposito, S. Agosteo, P. Colautti, V. Conte, D. Moro, A. Pola, Appl. Radiat. Isot. 69, 1660 (2011)CrossRefGoogle Scholar
  15. 15.
    A. Pisent, M. Comunian, A. Palmieri, E. Fagotti, G.V. Lamanna, S. Mathot, The TRASCO SPES-RFQ, in Proceedings of LINAC 2004 conference, JaCoW, Lubeck, Germany (2005) pp. 69--71Google Scholar
  16. 16.
    P.F. Mastinu, G. Martín Hernández, J. Praena, Nucl. Instrum. Methods A 601, 333 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    G. Martín-Hernández, P.F. Mastinu, J. Praena, N. Dzysiuk, R. Capote Noy, M. Pignatari, Appl. Radiat. Isot. 70, 1583 (2012)CrossRefGoogle Scholar
  18. 18.
    P. Mastinu, S. Marigo, Method for producing a heat exchanger and relevant heat exchanger, Patent Application Number PCT/IB2014/067156Google Scholar
  19. 19.
    B. Bayanov, V. Belov, V. Kindyuk, E. Oparin, S. Taskaev, Appl. Radiat. Isot. 61, 817 (2004)CrossRefGoogle Scholar
  20. 20.
    S. Halfon et al., Rev. Sci. Instrum. 85, 056105 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    S. Halfon et al., Appl. Radiat. Isot. 88, 238 (2014)CrossRefGoogle Scholar
  22. 22.
    D. Bisello, A. Candelori, P. Giubilato, A. Kaminski, D. Pantano, R. Rando, M. Tessaro, J. Wyss, The SIRAD irradiation facility for bulk damage and single event effect studies, in Proceedings of RADECS (2003) p. 451Google Scholar
  23. 23.
    J. Wyss, D. Bisello, D. Pantano, Nucl. Instrum. Methods A 462, 426 (2001)ADSCrossRefGoogle Scholar
  24. 24.
    J.F. Ziegler, SRIM, Stopping and range of ions in matter, available at http://www.srim.org
  25. 25.
    D. Bisello et al., Nucl. Instrum. Methods B 231, 65 (2005)ADSCrossRefGoogle Scholar
  26. 26.
    D. Bisello, P. Giubilato, S. Mattiazzo, M. Nigro, D. Pantano, R. Rando, L. Silvestrin, M. Tessaro, J. Wyss, Nucl. Instrum. Methods B 266, 2142 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    S. Mattiazzo, D. Bisello, P. Giubilato, A. Kaminsky, D. Pantano, L. Silvestrin, M. Tessaro, J. Wyss, Nucl. Instrum. Methods A 685, 125 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    G. Busatto et al., Microelectron. Reliab. 51, 1995 (2011)CrossRefGoogle Scholar
  29. 29.
    L. Silvestrin, D. Bisello, G. Busatto, P. Giubilato, F. Iannuzzo, S. Mattiazzo, D. Pantano, A. Sanseverino, M. Tessaro, F. Velardi, J. Wyss, Nucl. Instrum. Methods B 273, 234 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    S. Gerardin, M. Bagatin, A. Paccagnella, D. Bisello, P. Giubilato, S. Mattiazzo, D. Pantano, L. Silvestrin, M. Tessaro, J. Wyss, V. Ferlet-Cavrois, IEEE Trans. Nucl. Sci. 60, 4136 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    A. Dainelli et al., Nucl. Instrum. Methods A 382, 100 (1996)ADSCrossRefGoogle Scholar
  32. 32.
  33. 33.
    General Electric’s Inspection Technologies (formerly Seifert), www.gemeasurement.com
  34. 34.
    D. Bisello, A. Candelori, A. Kaminski, A. Litovchenko, E. Noha, L. Stefanutti, Rad. Phys. Chem. 71, 713 (2004)ADSCrossRefGoogle Scholar
  35. 35.
  36. 36.
    R. Rando, A. Bangert, D. Bisello, A. Candelori, P. Giubilato, M. Hirayama, R. Johnson, H.F.-W. Sadrozinsky, M. Sugizaki, J. Wyss, M. Ziegler, IEEE Trans. Nucl. Sci. 51, 1067 (2004)ADSCrossRefGoogle Scholar
  37. 37.

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • L. Silvestrin
    • 1
    • 2
    Email author
  • D. Bisello
    • 1
    • 2
  • J. Esposito
    • 3
  • P. Mastinu
    • 3
  • G. Prete
    • 3
  • J. Wyss
    • 2
    • 4
  1. 1.Dept. of Physics and AstronomyUniversity of PadovaPadovaItaly
  2. 2.INFN PadovaPadovaItaly
  3. 3.INFN Legnaroviale dellUniversit 2Legnaro (Pd)Italy
  4. 4.DICeMUniversity of CassinoCassino (Fr)Italy

Personalised recommendations