Advertisement

New state of nuclear matter: Nearly perfect fluid of quarks and gluons in heavy-ion collisions at RHIC energies

From charged particle density to jet quenching
  • R. NouicerEmail author
Review

Abstract.

This article reviews several important results from RHIC experiments and discusses their implications. They were obtained in a unique environment for studying QCD matter at temperatures and densities that exceed the limits wherein hadrons can exist as individual entities and raises to prominence the quark-gluon degrees of freedom. These findings are supported by major experimental observations via measuring of the bulk properties of particle production, particle ratios and chemical freeze-out conditions, and elliptic flow; followed by hard probe measurements: high- \( p_{T}\) hadron suppression, dijet fragment azimuthal correlations, and heavy-flavor probes. These measurements are presented for particles of different species as a function of system sizes, collision centrality, and energy carried out in RHIC experiments. The results reveal that a dense, strongly interacting medium is created in central \(Au+Au\) collisions at \( \sqrt{s_{NN}} = 200\) GeV at RHIC. This revelation of a new state of nuclear matter has also been observed in measurements at the LHC. Further, the IP-Glasma model coupled with viscous hydrodynamic models, which assumes the formation of a QGP, reproduces well the experimental flow results from \(Au+Au\) at \( \sqrt{s_{NN}} = 200\) GeV. This implies that the fluctuations in the initial geometry state are important and the created medium behaves as a nearly perfect liquid of nuclear matter because it has an extraordinarily low ratio of shear viscosity to entropy density, \( \eta/s\approx 0.12\). However, these discoveries are far from being fully understood. Furthermore, recent experimental results from RHIC and LHC in small \( p+A\), \( d+ Au\) and 3He+Au collision systems provide brand new insight into the role of initial and final state effects. These have proven to be interesting and more surprising than originally anticipated; and could conceivably shed new light in our understanding of collective behavior in heavy-ion physics. Accordingly, the focus of the experiments at both facilities RHIC and the LHC is on detailed exploration of the properties of this new state of nuclear matter, the QGP.

Keywords

Transverse Momentum Nuclear Matter Collision Centrality Star Collaboration RHIC Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    E. Shuryak, Phys. Rep. 61, 71 (1980)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    L. McLerran, Rev. Mod. Phys. 58, 1021 (1986)ADSCrossRefGoogle Scholar
  3. 3.
    M. Hindmarsh, O. Philipsen, Phys. Rev. D 71, 08730 (2005)CrossRefGoogle Scholar
  4. 4.
  5. 5.
    S. Borsanyi, G. Endrodi, Z. Fodor, A. Jakovac, S.D. Katz, S. Krieg, C. Ratti, K.K. Szabo, JHEP 11, 077 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    S. Borsanyi, Z. Fodor, C. Hoelbling, S.D. Katz, S. Krieg, K.K. Szabo, Phys. Lett. B 370, 99 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    A. Bazavov A. Bazavov, T. Bhattacharya, C. DeTar, H. Ding, S. Gottlieb, R. Gupta, P. Hegde, U.M. Heller, F. Karsch, E. Laermann et al., Phys. Rev. D 90, 094503 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    H.G. Baumgardt, J.U. Schott, Y. Sakamoto, E. Schopper, H. Stöcker, J. Hofmann, W. Scheid, W. Greiner, Z. Phys. A 273, 359 (1975)ADSCrossRefGoogle Scholar
  9. 9.
    J.D. Bjorken, Phys. Rev. D 27, 140 (1983)ADSCrossRefGoogle Scholar
  10. 10.
    PHENIX Collaboration (I. Arsene et al.), Nucl. Phys. A 757, 1 (2005)CrossRefGoogle Scholar
  11. 11.
    PHOBOS Collaboration (B.B. Back et al.), Nucl. Phys. A 757, 28 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    BRAHMS Collaboration (J. Adams et al.), Nucl. Phys. A 757, 102 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    STAR Collaboration (K. Adcox et al.), Nucl. Phys. A 757, 184 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    M. Harrison, T. Ludlam, S. Ozaki, Nucl. Instrum. Methods Phys. Res. A 499, 235 (2003)ADSCrossRefGoogle Scholar
  15. 15.
  16. 16.
    I. Alekseev, C. Allgower, M. Bai, Y. Batygin, L. Bozano, K. Brown, G. Bunce, P. Cameron, E. Courant, S. Erin, Series: C-A/AP - Report Number: C-A/AP/455, BNL-97226-2006-IRGoogle Scholar
  17. 17.
    M. Gyulassy, L. McLerran, Nucl. Phys. A 750, 30 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    ATLAS Collaboration (G. Aad et al.), Phys. Rev. Lett. 114, 072302 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    ALICE Collaboration (K. Aamodt et al.), Phys. Lett. B 734, 31 (2014)CrossRefGoogle Scholar
  20. 20.
    CMS Collaboration (V. Khachatryan et al.), JHEP 09, 091 (2010)Google Scholar
  21. 21.
    ATLAS Collaboration (G. Aad et al.), Phys. Rev. Lett. 110, 182302 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    ALICE Collaboration (B. Abelev et al.), Phys. Lett. B 726, 164 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    ALICE Collaboration (L. Milano), J. Phys. Conf. Ser. 509, 012105 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    PHENIX Collaboration (A. Adare et al.), Phys. Rev. Lett. 98, 232301 (2007)CrossRefGoogle Scholar
  25. 25.
    X. Zhao, R. Rapp, Phys. Lett. B 664, 253 (2008)ADSCrossRefGoogle Scholar
  26. 26.
    Y. Liu, Q. Zhen, N. Xu, P. Zhuang, Phys. Lett. B 678, 72 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    R. Vogt, Phys. Rev. C 71, 054902 (2005)ADSCrossRefGoogle Scholar
  28. 28.
    D. Kharzeev, C. Lourenco, M. Nardi, H. Satz, Z. Phys. C 74, 307 (1997)CrossRefGoogle Scholar
  29. 29.
    K.J. Eskola, H. Paukkunen, C.A. Salgado, JHEP 04, 065 (2009)ADSCrossRefGoogle Scholar
  30. 30.
    J.L. Nagle, A.D. Frawley, L.A. Linden Levy, M.G. Wysocki, Phys. Rev. C 84, 044911 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    PHOBOS Collaboration (R. Nouicer et al.), Eur. Phys. J. C 33, S606 (2004)CrossRefGoogle Scholar
  32. 32.
    S. Ahmad, A. Ahmad, A. Chandra, M. Zafar, M. Irfan, Adv. High Energy Phys. 2013, 836071 (2013)CrossRefGoogle Scholar
  33. 33.
    PHOBOS Collaboration (R. Nouicer), QCD and Hadronic Interactions, edited by Tran Thanh Van (The Gioi Publishers, Hanoi, 2002) pp. 381Google Scholar
  34. 34.
    R.J. Glauber, G. Matthiae, Nucl. Phys. B 21, 135 (1970)ADSCrossRefGoogle Scholar
  35. 35.
    P. Shukla, Phys. Rev. C 67, 054607 (2003)ADSCrossRefGoogle Scholar
  36. 36.
    M.L. Miller, K. Reygers, S.J. Sanders, P. Steinberg, Annu. Rev. Nucl. Part. Sci. 57, 205 (2007)ADSCrossRefGoogle Scholar
  37. 37.
    Q.Y. Shou, Y.G. Ma, P. Sorensen, A.H. Tang, F. Videbk, H. Wang, Phys. Lett. B 749, 215 (2015)ADSCrossRefGoogle Scholar
  38. 38.
    R. Nouicer, Habilitation à Diriger des Recherches, University of Strasbourg, 2013 HDR/N^o 293, https://tel.archives-ouvertes.fr/tel-00925262
  39. 39.
    PHOBOS Collaboration (B.B. Back et al.), Phys. Rev. Lett. 91, 502303 (2003)Google Scholar
  40. 40.
    PHOBOS Collaboration (R. Nouicer et al.), AIP Conf. Proc. 842, 86 (2006)CrossRefGoogle Scholar
  41. 41.
    PHOBOS Collaboration (B. Alver et al.), Phys. Rev. Lett. 102, 142301 (2009)CrossRefGoogle Scholar
  42. 42.
    NA49 Collaboration (S.V. Afanasiev et al.), Phys. Rev. C 66, 054902 (2002)CrossRefGoogle Scholar
  43. 43.
    NA49 Collaboration (T. Anticic et al.), Phys. Rev. C 69, 024902 (2004)CrossRefGoogle Scholar
  44. 44.
    ALICE Collaboration (K. Aamodt et al.), Phys. Rev. Lett. 105, 252301 (2010)ADSCrossRefGoogle Scholar
  45. 45.
    P. Tribedy, R. Venugopalan, Phys. Lett. B 710, 125 (2012)ADSCrossRefGoogle Scholar
  46. 46.
    D. Kharzeev, M. Nardi, Phys. Lett. B 507, 121 (2001)ADSCrossRefGoogle Scholar
  47. 47.
    A. Kovner, M. Lublinsky, Phys. Rev. D 92, 034016 (2015)ADSCrossRefGoogle Scholar
  48. 48.
    PHOBOS Collaboration (R. Nouicer et al.), J. Phys. G 30, S113 (2004)CrossRefGoogle Scholar
  49. 49.
    PHOBOS Collaboration (B.B. Back et al.), Phys. Rev. Lett. 93, 082301 (2004)CrossRefGoogle Scholar
  50. 50.
    PHOBOS Collaboration (B.B. Back et al.), Phys. Rev. C 72, 031901(R) (2005)CrossRefGoogle Scholar
  51. 51.
    PHOBOS Collaboration (B.B. Back et al.), Phys. Rev. C 83, 024913 (2011)CrossRefGoogle Scholar
  52. 52.
    PHOBOS Collaboration (R. Nouicer et al.), Nucl. Instrum. Methods Phys. Res. A 461, 143 (2001)CrossRefGoogle Scholar
  53. 53.
    PHOBOS Collaboration (B.B. Back et al.), Nucl. Instrum. Methods Phys. Res. A 499, 603 (2003)ADSCrossRefGoogle Scholar
  54. 54.
    T.S. Ullrich, Eur. Phys. J. A 19, s01 (2004)CrossRefGoogle Scholar
  55. 55.
    R. Hagedorn, Suppl.Nuovo Cimento 3, 150 (1965)Google Scholar
  56. 56.
    BRAHMS Collaboration (I.G. Bearden et al.), Phys. Rev. Lett. 90, 102301 (2003)ADSCrossRefGoogle Scholar
  57. 57.
    A. Andronic et al., Nucl. Phys. A 904-905, 535c (2013)ADSCrossRefGoogle Scholar
  58. 58.
    BRAHMS Collaboration (I.G. Bearden et al.), Phys. Rev. Lett. 93, 102301 (2004)ADSCrossRefGoogle Scholar
  59. 59.
    STAR Collaboration (M.M. Aggarwal et al.), Phys. Rev. C 83, 034910 (2011)CrossRefGoogle Scholar
  60. 60.
    R. Stock, Proc. Sci. PoS CPOD2006, 040 (2006)Google Scholar
  61. 61.
    P. Braun-Munzinger, K. Redlich, J. Stachel, in Quark-Gluon Plasma 3, edited by R.C. Hwa, X.N. Wang (World Scientific, Singapore, 2004) p. 491--599Google Scholar
  62. 62.
    M. Kliemant, R. Sahoo, T. Schuster, R. Stock, The Physics of the Quark-Gluon Plasma, in Lectures Notes in Physics, Vol. 785 (2010) p. 23Google Scholar
  63. 63.
    F. Becattini, Nucl. Phys. A 702, 336 (2002)ADSCrossRefGoogle Scholar
  64. 64.
    F. Karsch, E. Laermann, A. Peikert, Phys. Lett. B 478, 447 (2000)ADSCrossRefGoogle Scholar
  65. 65.
    U. Heinz, G. Kestin, PoS CPOD2006, 038 (2006)Google Scholar
  66. 66.
    H. Stöcker, J.A. Maruhn, W. Greiner, Phys. Rev. Lett. 44, 725 (1980)ADSCrossRefGoogle Scholar
  67. 67.
    H. Stöcker, LP Csernai, G. Graebner, G. Buchwald, H. Kruse, RY Cusson, J.A. Maruhn, W. Greiner, Phys. Rev. C 25, 1873 (1982)ADSCrossRefGoogle Scholar
  68. 68.
    H. Stöcker, W. Greiner et al., Phys. Rep. 137, 277 (1986)ADSCrossRefGoogle Scholar
  69. 69.
    W. Reisdorf, H.G. Ritter, Annu. Rev. Nucl. Part. Sci. 47, 663 (1997)ADSCrossRefGoogle Scholar
  70. 70.
    NA49 Collaboration (C. Alt et al.), Phys. Rev. C 68, 034903 (2003)CrossRefGoogle Scholar
  71. 71.
    PHOBOS Collaboration (R. Nouicer et al.), J. Phys. G 34, S887 (2007)ADSCrossRefGoogle Scholar
  72. 72.
    PHOBOS Collaboration (B. Alver et al.), Phys. Rev. Lett. 94, 122303 (2005)CrossRefGoogle Scholar
  73. 73.
    PHOBOS Collaboration (B. Alver et al.), Phys. Rev. Lett. 98, 242302 (2007)CrossRefGoogle Scholar
  74. 74.
    A.M. Poskanzer, S.A. Voloshin, Phys. Rev. C 58, 1671 (1998)ADSCrossRefGoogle Scholar
  75. 75.
    B. Alver, G. Roland, Phys. Rev. C 81, 054905 (2010)ADSCrossRefGoogle Scholar
  76. 76.
    L.X. Han, G.L. Ma, Y.G. Ma, X.Z. Cai, J.H. Chen, S. Zhang, Phys. Rev. C 84, 064907 (2011)ADSCrossRefGoogle Scholar
  77. 77.
    T. Hirano, U. Heinz, D. Kharzeev, R. Lacey, Y. Nara, Phys. Lett. B 636, 299 (2006)ADSCrossRefGoogle Scholar
  78. 78.
    Lie-Wen Chen, Che Ming Ko, Phys. Lett. B 634, 205 (2006)ADSCrossRefGoogle Scholar
  79. 79.
    FOPI Collaboration (A. Andronic et al.), Phys. Lett. B 612, 173 (2005)ADSCrossRefGoogle Scholar
  80. 80.
    PHOBOS Collaboration (R. Nouicer), in Proceeding of the 22nd Lake Louise Winter Institute, Fundamental Interactions, (Word Scientific, 2007) p. 373Google Scholar
  81. 81.
    N. Borghini, U.A. Wiedemann, J. Phys. G 35, 023001 (2008)ADSCrossRefGoogle Scholar
  82. 82.
    ALICE Collaboration (K. Aamodt et al.), Phys. Rev. Lett. 105, 252302 (2010)ADSCrossRefGoogle Scholar
  83. 83.
    ALICE Collaboration (R. Snellings et al.), J. Phys. G: Nucl. Part. Phys. 38, 124013 (2011)ADSCrossRefGoogle Scholar
  84. 84.
    STAR Collaboration (Md. Nasim et al.), Nucl. Phys. A 904, 413c (2013)Google Scholar
  85. 85.
    J. Adams et al., Phys. Lett. B 612, 181 (2005)ADSCrossRefGoogle Scholar
  86. 86.
    J. Adams et al., Nucl. Phys. A 757, 102 (2005)ADSCrossRefGoogle Scholar
  87. 87.
    STAR Collaboration (J. Adams et al.), Phys. Rev. Lett. 95, 122301 (2005)CrossRefGoogle Scholar
  88. 88.
    STAR Collaboration (J. Adams et al.), Phys. Rev. C 77, 054901 (2008)CrossRefGoogle Scholar
  89. 89.
    ALICE Collaboration (K. Aamodt et al.), JHEP 06, 190 (2015)ADSGoogle Scholar
  90. 90.
    PHENIX Collaboration (S.S. Adler et al.), Phys. Rev. C 89, 034915 (2014)ADSCrossRefGoogle Scholar
  91. 91.
    C. Gale, S. Jeon, B. Schenke, P. Tribedy, R. Venugopalan, Phys. Rev. Lett. 110, 012302 (2013)ADSCrossRefGoogle Scholar
  92. 92.
    B. Schenke, P. Tribedy, R. Venugopalan, Phys. Rev. Lett. 108, 252301 (2012)ADSCrossRefGoogle Scholar
  93. 93.
    B. Schenke, P. Tribedy, R. Venugopalan, Phys. Rev. C 86, 034908 (2012)ADSCrossRefGoogle Scholar
  94. 94.
    B. Schenke, R. Venugopalan, Phys. Rev. Lett. 113, 102301 (2014)ADSCrossRefGoogle Scholar
  95. 95.
    STAR Collaboration (J. Adams et al.), Phys. Rev. C 72, 014904 (2005)CrossRefGoogle Scholar
  96. 96.
    J. Xu, J. Liao, M. Gyulassy, Chin. Phys. Lett. 32, 092501 (2015)ADSCrossRefGoogle Scholar
  97. 97.
    D. Molnar, S.A. Voloshin, Phys. Rev. Lett. 91, 092301 (2003)ADSCrossRefGoogle Scholar
  98. 98.
    PHENIX Collaboration (S.S. Adler et al.), Phys. Rev. Lett. 91, 072301 (2003)CrossRefGoogle Scholar
  99. 99.
    PHENIX Collaboration (S.S. Adler et al.), Phys. Rev. Lett. 91, 241803 (2003)CrossRefGoogle Scholar
  100. 100.
    D. d’Enterria, Phys. Lett. B 596, 32 (2004)ADSCrossRefGoogle Scholar
  101. 101.
    J.W. Cronin, H.J. Frisch, M.J. Shochet, J.P. Boymond, P.A. Piroué, R.L. Sumner, Phys. Rev. D 11, 3105 (1975)ADSCrossRefGoogle Scholar
  102. 102.
    BRAHMS Collaboration (I.G. Bearden et al.), Phys. Rev. Lett. 93, 102301 (2004)ADSCrossRefGoogle Scholar
  103. 103.
    STAR Collaboration (B.I. Abelev et al.), Phys. Lett. B 655, 104 (2007)ADSCrossRefGoogle Scholar
  104. 104.
    PHENIX Collaboration (S.S. Adler et al.), Phys. Rev. Lett. 98, 172302 (2007)CrossRefGoogle Scholar
  105. 105.
    PHENIX Collaboration (S.S. Adler et al.), Phys. Rev. Lett. 96, 202301 (2006)CrossRefGoogle Scholar
  106. 106.
    PHENIX Collaboration (S.S. Adler et al.), Phys. Rev. Lett. 91, 072303 (2003)CrossRefGoogle Scholar
  107. 107.
    PHENIX Collaboration (R. Nouicer et al.), Nucl. Phys. A 862, 62 (2011)ADSGoogle Scholar
  108. 108.
    PHENIX Collaboration (R. Nouicer et al.), J. Phys.: Conf. Ser. 420, 012021 (2013)ADSGoogle Scholar
  109. 109.
    CMS Collaboration, Eur. Phys. J. C 72, 1945 (2012)ADSCrossRefGoogle Scholar
  110. 110.
    J.D. Bjorken, Phys. Rev. D 27, 140 (1983)ADSCrossRefGoogle Scholar
  111. 111.
    M. Gyulassy et al., Phys. Lett. B 243, 432 (1990)ADSCrossRefGoogle Scholar
  112. 112.
    BRAHMS Collaboration (J.J. Gaardhoje et al.), Nucl. Phys. A 734, 13 (2004)CrossRefGoogle Scholar
  113. 113.
    M.H. Thoma, M. Gyulassy et al., Nucl. Phys. B 351, 491 (1991)ADSCrossRefGoogle Scholar
  114. 114.
    A. Accardi, N. Armesto, Contribution to the CERN Yellow report on Hard Probes in Heavy Ion Collisions at the LHC (2002)Google Scholar
  115. 115.
    PHENIX Collaboration (S.S. Alder et al.), Phys. Rev. Lett. 96, 032301 (2006)CrossRefGoogle Scholar
  116. 116.
    STAR Collaboration (J. Adams et al.), Phys. Rev. Lett. 94, 062301 (2005)CrossRefGoogle Scholar
  117. 117.
    I. Vitev, Miklos Gyulassy, Nucl. Phys. A 715, 779 (2003)ADSCrossRefGoogle Scholar
  118. 118.
    X.N. Wang, Phys. Lett. B 595, 165 (2004)ADSCrossRefGoogle Scholar
  119. 119.
    I. Vitev, M. Gyulassy, Phys. Rev. Lett. 89, 252301 (2002)ADSCrossRefGoogle Scholar
  120. 120.
    I. Vitev, J. Phys. G 30, S791 (2004)ADSCrossRefGoogle Scholar
  121. 121.
    UA2 Collaboration (M. Banner et al.), Phys. Lett. B 118, 203 (1982)CrossRefGoogle Scholar
  122. 122.
    UA1 Collaboration (G. Arnison et al.), Phys. Lett. B 123, 115 (1983)ADSCrossRefGoogle Scholar
  123. 123.
    CDF Collaboration (F. Abe et al.), Phys. Rev. Lett. 62, 613 (1989)CrossRefGoogle Scholar
  124. 124.
    CDF Collaboration (F. Abe et al.), Phys. Rev. D 41, 1722 (1990)Google Scholar
  125. 125.
    UA1 Collaboration (G. Arnison et al.), Phys. Lett. B 118, 173 (1982)CrossRefGoogle Scholar
  126. 126.
    CDF Collaboration (F. Abe et al.), Phys. Rev. Lett. 65, 968 (1990)CrossRefGoogle Scholar
  127. 127.
    Axial Field Spectrometer Collaboration (T. Akesson et al.), Phys. Lett. B 123, 133 (1983)ADSCrossRefGoogle Scholar
  128. 128.
    UA2 Collaboration (J.A. Appel et al.), Phys. Lett. B 160, 349 (1985)ADSCrossRefGoogle Scholar
  129. 129.
    UA1 Collaboration (G. Arnison et al.), Phys. Lett. B 172, 461 (1986)CrossRefGoogle Scholar
  130. 130.
    PHENIX Collaboration (K. Adcox et al.), Phys. Rev. Lett. 88, 022301 (2002)Google Scholar
  131. 131.
    STAR Collaboration (C. Adler et al.), Phys. Rev. Lett. 89, 202301 (2002)CrossRefGoogle Scholar
  132. 132.
    STAR Collaboration (P. Jacobs et al.), Prog. Nucl. Phys. 54, 443 (2005)ADSCrossRefGoogle Scholar
  133. 133.
    STAR Collaboration (C. Adler et al.), Phys. Rev. Lett. 90, 082302 (2003)CrossRefGoogle Scholar
  134. 134.
    STAR Collaboration (J. Adams et al.), Phys. Rev. Lett. 91, 072304 (2003)CrossRefGoogle Scholar
  135. 135.
    STAR Collaboration (J. Adams et al.), Phys. Rev. Lett. 95, 152301 (2005)CrossRefGoogle Scholar
  136. 136.
    M. Gyulassy, M. Plümer, Nucl. Phys. A 527, 641 (1991)ADSCrossRefGoogle Scholar
  137. 137.
    X. Wang, M. Gyulassy, Phys. Rev. Lett. 68, 1480 (1992)ADSCrossRefGoogle Scholar
  138. 138.
    X.N. Wang, Phys. Rev. C 61, 064910 (2000)ADSCrossRefGoogle Scholar
  139. 139.
    I. Vitev, Phys. Lett. B 562, 36 (2003)ADSCrossRefGoogle Scholar
  140. 140.
    J.w. Qiu, I. Vitev, Phys. Rev. Lett. 93, 262301 (2004)ADSCrossRefGoogle Scholar
  141. 141.
    D. Kharzeev, E. Levin, L. McLerran, Phys. Lett. B 561, 93 (2003)ADSCrossRefGoogle Scholar
  142. 142.
    PHOBOS Collaboration (B.B. Back et al.), Phys. Rev. Lett. 91, 072302 (2003)CrossRefGoogle Scholar
  143. 143.
    PHENIX Collaboration (S.S. Adler et al.), Phys. Rev. Lett. 91, 072303 (2003)CrossRefGoogle Scholar
  144. 144.
    STAR Collaboration (J. Adams et al.), Phys. Rev. Lett. 91, 072304 (2003)CrossRefGoogle Scholar
  145. 145.
    BRAHMS Collaboration (I. Arsene et al.), Phys. Rev. Lett. 91, 072305 (2003)CrossRefGoogle Scholar
  146. 146.
    M. Gyulassy, I. Vitev, X.N. Wang, B.W. Zhang, in Quark Gluon Plasma 3, edited by R.C. Hwa and X.-N. Wang (World Scientific, Singapore, 2004) p. 123Google Scholar
  147. 147.
    S.J. Brodsky, SLAC-PUB-9022Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of PhysicsBrookhaven National LaboratoryUptonUSA

Personalised recommendations